ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:1.22MB ,
资源ID:905447      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/905447.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(五年级奥数 数论中国剩余定理及弃九法A级学生版.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

五年级奥数 数论中国剩余定理及弃九法A级学生版.docx

1、五年级奥数 数论中国剩余定理及弃九法A级学生版一、 中国剩余定理中国古代趣题1) 趣题一中国数学名著孙子算经里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人。刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9

2、945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。2) 趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五

3、树梅花廿一枝,七子团圆正月半,除百零五便得知”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem),是我国古代数学的一项辉煌成果诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘 五树梅花廿一枝,是说除以5所得的余数用21乘 七子团圆正月半,是说除以7所得的余数用15乘除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如

4、果仍比105大,则继续减去105,最后所得的整数就是所求也就是, 为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数也就是说,是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答3)

5、 核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以孙子算经中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。最后再构造除以7余1,同时

6、又是3,5公倍数的数字,45符合要求,那么所求的自然数可以这样计算:,其中k是自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上3,5,7即可,即23+105=128。二、 弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算

7、式1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。所以我们总结出弃九发原

8、理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式迷问题。注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。【例 1】 将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:12

9、34567891011121320072008,试求这个多位数除以9的余数【巩固】 连续写出从开始的自然数,写到时停止,得到一个多位数:,请说明:这个多位数除以,得到的余数是几?为什么?【例 2】 将依次写到第2013个数字,组成一个2013位数,那么此数除以9的余数是 _【巩固】 有2个三位数相乘的积是一个五位数,积的后四位是7037,第一个数各个位的数字之和是16,第二个数的各个位数字之和是8,求两个三位数的和。【例 3】 设的各位数字之和为,的各位数字之和为,的各位数字之和为,那么 【巩固】 3个三位数乘积的算式(其中), 在校对时,发现右边的积的数字顺序出现错误,但是知道最后一位6是正

10、确的,问原式中的是多少?【例 4】 一个小于200的数,它除以11余8,除以13余10,这个数是几?【巩固】 求满足下列条件的最小自然数:用3除余2,用5除余1,用7除余1。【例 5】 5年级3班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6排多5人,问上体育课的同学最少_人。【巩固】 有一个自然数,除以2余1,除以3余2,除以4余3,除以5余4,除以6余5,则这个数最小是 。【例 6】 小朋友们要做一次“动物保护”宣传活动,若1人拿3个动物小玩具,则最后余下2个动物小玩具;若1人拿4个动物小玩具,则最后余下3个动物小玩具;若1人拿5个动物小玩具,则最后余下4动物小玩具。

11、那么这次活动中小朋友至少拿了_个动物小玩具。【巩固】 有一批图书总数在1000本以内,若按24本书包成一捆,则最后一捆差2本;若按28本书包成一捆,最后一捆还是差2本书;若按32本包一捆,则最后一捆是30本那么这批图书共有本【例 7】 一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数【巩固】 数119很奇特:当被2除时,余数为1;当被3除时,余数为2;当被4除时,余数为3;当被5除时,余数为4;当被6除时,余数为5问:具有这种性质的三位数还有几个?【例 8】 “民间流传着一则故事韩信点兵秦朝末年,楚汉相争一次,韩信将1500名将士与楚王大将李锋交战苦战一场

12、,楚军不敌,败退回营,汉军也死伤四五百人忽有后军来报,说有楚军骑兵追来,韩信便急速点兵迎敌他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人”根据故事中的条件,你能算出韩信有多少将士么? 【巩固】 一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数 【例 9】 有一个数,除以3余2,除以4余1,问这个数除以12余几?【巩固】 有两个数字,甲:除以5余3,除以6余4,除以7余1:乙:除以5余3,除以6余4,除以7余1,除以

13、15余?,当?取几的时候乙数是存在的,说明理由。【例 10】 有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根?【巩固】 五只猴子找到一堆桃子,怎么也平分不了,于是大家同意去睡觉,明天再说。夜里,一只猴子偷偷起来,吃掉一只桃子,剩下的桃子正好平分五等份,它拿走自己的一份,然后去睡觉;第二只猴子起来,也吃掉一只桃子,剩下的桃子也正好分成五等份,它也拿走了自己的一份,然后去睡觉。第三、四、五只猴子也都这样做。问:最初至少有_个桃

14、子。【随练1】 有一群猴子正要分56个桃子每只猴子可以分到同样个数的桃子。这时又窜来4只猴子。只好重新分配,但要使每只猴子分到同样个数的桃子,必须扔掉一个桃子则最后每只猴子分到桃子_个。【随练2】 小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人。那么一起做游戏的小朋友至少有 人。【随练3】 有连续的三个自然数、,它们恰好分别是9、8、7的倍数,求这三个自然数中最小的数至少是多少?【作业1】 求除以9、99、999、的余数分别是多少?【作业2】 求满足下列条件的最小自然数:用3除余1,用5除余1,用7除余1。【作业3】 求满足下列条件的最小自然数:用3除余1,用5除余2,用7除余2。【作业4】 求满足下列条件的最小自然数:用3除余2,用7除余4,用11除余1。【作业5】 今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物最少几何?【作业6】 将1,2,3,,30从左往右依次排列成一个51位数,这个数被11除的余数是多少?

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1