1、一次函数1一次函数讲义(一) 姓名_ 完成时间_一填空题1关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为2点B(5,2)到x轴的距离是,到y轴的距离是,到原点的距离是3以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为4点P(a3,5a)在第一象限内,则a的取值范围是5小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是6已知,一次函数y=kx+b(k0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:7一次函数y=(k1)x+k+1经过一、二、
2、四象限,则k的取值范围是函数y=2x+4的图象经过象限,它与两坐标轴围成的三角形面积为8一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k=,b=9若点(m,m+3)在函数y=x+2的图象上,则m=10y与3x成正比例,当x=8时,y=12,则y与x的函数解析式为11函数y=x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx112函数y=2x4,当x,y013若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b=14已知函数y=(m1)+1是一次函数,则m=15如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间
3、的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元 16已知一次函数y=kx1,请你补充一个条件,使函数图象经过第二、三、四象限二选择题:17直线y=kx+b经过一、二、四象限,则k、b应满足()Ak0,b0 Bk0,b0 Ck0,b0 Dk0,b018已知一次函数y=(m+2)x+m2m4的图象经过点(0,2),则m的值是()A2 B2 C2或3 D319若点A(2a,12a)关于y轴的对称点在第三象限,则a的取值范围是()Aa Ba2 Ca2 Da或a220下列关系式中,表示y是x的正比例函数的是()Ay= By=1 Cy=x+1 Dy=2x21函数y=4x2与y
4、=4x2的交点坐标为()A(2,0) B(0,2) C(0,2) D(2,0)22在平面直角坐标系中,直线y=kx+b(k0,b0)不经过哪一象限()A第一象限 B第二象限 C第三象限 D第四象限23一次函数y=axa(a0)的大致图象是()A B C D三、解答题24已知一次函数的图象经过点A(1,3)和点(2,3),(1)求一次函数的解析式;(2)判断点C(2,5)是否在该函数图象上25如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=2x+2的图象(1)求A、B、P三点坐标(2)求PAB的面积26已知y3与3x+1成正比例,且x=2时,y=6.5(1)求y与x之间的函数关系
5、式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a27如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系(1)B出发时与A相距千米(2)B出发后小时与A相遇(3)B走了一段路后,自行车发生故障,进行 修理,所用的时间是小时(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米在图中表示出这个相遇点C(5)求出A行走的路程S与时间t的函数关系式(写出过程)28有一个带有进出水管的容器,每单位时间内进出的水量是一定的设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如
6、图:(1)每分钟进水多少?(2)0x4时,y与x的函数关系式是什么?(3)4x12时,函数关系式是什么?(4)你能求每分钟放水多少升吗?29甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km第12章 一次函数参考答案与试题解析一填空题1关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为【考点】关于原点对称的点
7、的坐标;关于x轴、y轴对称的点的坐标【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题【解答】解:在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,点A关于x轴对称的点的坐标是(3,4),关于y轴对称时,横坐标为相反数,纵坐标不变,点A关于y轴对称的点的坐标是(3,4),关于原点对称时,横纵坐标都为相反数,点A关于原点对称的点的坐标是(3,4)故答案为:(3,4),(3,4),(3,4)【点评】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标
8、的符号,难度适中2点B(5,2)到x轴的距离是,到y轴的距离是,到原点的距离是【考点】勾股定理;点的坐标【分析】根据坐标的表示方法可得到点A到x轴的距离为2,到y轴的距离为5,然后根据勾股定理计算点A到原点的距离【解答】解:点A坐标为(5,2),点A到x轴的距离为2,到y轴的距离为5,到原点的距离=故答案为2,5,【点评】本题考查了点的坐标:过一个点分别作x轴和y轴的垂线,垂足在x轴的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标也考查了勾股定理3以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为【考点】直线与圆的位置关系;坐标与图形性质【分析】根据A的坐标和半
9、径即可求出圆和x轴的交点坐标,根据勾股定理求出OD、OE,即可求出圆和y轴的交点坐标【解答】解:A的半径为5,A(3,0),53=2,5+3=8,即A和x轴的交点坐标为(2,0)和(8,0);连接AD、AE,由勾股定理得:OD=4,同理OE=4,即A和y轴的交点坐标为(0,4)和(0,4);故答案为:(2,0)或(8,0);(0,4)或(0,4)【点评】本题考查了直线与圆的位置关系,坐标与图形性质,勾股定理的应用,题目比较好,难度不大4点P(a3,5a)在第一象限内,则a的取值范围是【考点】点的坐标;解一元一次不等式组【分析】根据第一象限内点的横坐标与纵坐标都是正数列出不等式组,然后求解即可【
10、解答】解:点P(a3,5a)在第一象限内,解不等式得,a3,解不等式得,a5,所以,a的取值范围是3a5故答案为:3a5【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(,+);第三象限(,);第四象限(+,)5小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值范围是【考点】根据实际问题列一次函数关系式【专题】经济问题【分析】剩余的钱数=总钱数500x件这种商品的总价格,根据x应是正整数,且商品的总价不能超过500可得x的取值
11、范围【解答】解:x件这种商品的总价格为3x,y=5003x,5003x0,解得x166,0x166,且x为整数故答案为:y=5003x;0x166,且x为整数【点评】本题考查了列一次函数关系式,得到剩余的钱数的等量关系是解决本题的关键;注意商品的件数应为正整数;所买商品的总价钱不能超过所带的总钱数6已知,一次函数y=kx+b(k0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:【考点】一次函数的性质【专题】开放型【分析】根据题意可知k0,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将(0,2)代入函数式,求得b,那么符合条件的函数式也就
12、求出【解答】解:y随x的增大而减小k0可选取1,那么一次函数的解析式可表示为:y=x+b把点(0,2)代入得:b=2要求的函数解析式为:y=x+2【点评】本题需注意应先确定x的系数,然后把适合的点代入求得常数项7一次函数y=(k1)x+k+1经过一、二、四象限,则k的取值范围是函数y=2x+4的图象经过象限,它与两坐标轴围成的三角形面积为【考点】一次函数图象与系数的关系【分析】根据一次函数y=(k1)x+k+1的图象经过第一、二、四象限判断出k的取值范围即可;求得直线y=2x+4与坐标轴的交点坐标即可求得围成的三角形的面积【解答】解:一次函数y=(k1)x+k+1经过一、二、四象限,k10,k
13、+10,解得:1k1;函数y=2x+4中20,40,函数y=2x+4的图象经过一、二、四象限,令y=2x+4=0,解得:x=2,与x轴交于(2,0),令x=0,解得:y=4,故与y轴交于(0,4),与两坐标轴围成的面积为24=4,故答案为:1k1,一、二、四,4【点评】考查了一次函数的性质,在直线y=kx+b中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小8一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k=,b=【考点】待定系数法求一次函数解析式【分析】将(1,5),(0,3)代入一次函数的解析式,利用待定系数法求该函数的解析式的系数【解答】解:一次函数y=k
14、x+b的图象经过点(1,5),交y轴于(0,3),解得故答案为:2,3【点评】本题考查了待定系数法求一次函数的解析式9若点(m,m+3)在函数y=x+2的图象上,则m=【考点】一次函数图象上点的坐标特征【分析】直接把点(m,m+3)代入直线y=x+2进行计算即可【解答】解:点(m,m+3)在函数y=x+2的图象上,m+3=m+2,解得m=故答案为:【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键10y与3x成正比例,当x=8时,y=12,则y与x的函数解析式为【考点】待定系数法求一次函数解析式【专题】待定系数法【分析】因为y与3x
15、成正比例,所以可设y=k3x即y=3kx,又因为当x=8时,y=12,则有12=38k从而可求出k的值,进而解决问题【解答】解:y与3x成正比例设y=k3x即y=3kx又当x=8时,y=1212=38kk=y与x的函数解析式为y=x【点评】此类题目可根据题意,利用待定系数法建立函数关系式,然后利用方程解决问题11函数y=x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx1【考点】一次函数的性质【分析】把x=2代入y=x得到y=2,然后根据一次函数性质确定直线y=x所经过的象限和增减性【解答】解:函数y=x的图象是一条过原点及(2,2)的直线,这条直线经过第二、
16、四象限,当x增大时,y随之减小故答案为2;二、四;减小【点评】本题考查了一次函数的性质:k0,y随x的增大而增大,函数从左到右上升;k0,y随x的增大而减小,函数从左到右下降12函数y=2x4,当x,y0【考点】一次函数与一元一次不等式【分析】求出一次函数与x轴的交点,然后根据k0,y随x的增大而增大解答即可【解答】解:当y=0时,2x4=0,解得x=2,k=20,y随x的增大而增大,当x2时,y0故答案为:2【点评】本题考查了一次函数的增减性,熟记一次函数y=kx+b,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小是解题的关键13若函数y=4x+b的图象与两坐标轴围成的三角形面积
17、为6,那么b=【考点】一次函数图象上点的坐标特征【分析】先令x=0,求出y的值,再令y=0求出x的值即可得出直线与坐标轴的交点,再利用三角形的面积公式求解即可【解答】解:令x=0,则y=b;令y=0,则x=,函数y=4x+b与xy轴的交点分别为(,0)(0,b)函数y=4x+b的图象与两坐标轴围成的三角形面积为6,|b|=6,解得b=4故答案为:4【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键14已知函数y=(m1)+1是一次函数,则m=【考点】一次函数的定义【专题】计算题【分析】根据一次函数的定义,令m2=1,m10即可解答
18、【解答】若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)因而有m2=1,解得:m=1,又m10,m=1【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k0,自变量次数为115如图,某公用电话亭打电话时,需付电话费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,小文打了2分钟,需付费元,小文打了8分钟付费元【考点】一次函数的应用【分析】通话时间小于3分钟时,需付0.7元,故小文打了2分钟,需付费0.7;通过A点和B点坐标分别为(3,0.7)和(4,1)用待定系数法列方
19、程,求函数关系式再将x=8代入得出y【解答】解:根据图形可知,当通话时间小于3分钟时,需付电话费话0.7元故小文打了2分钟,需付费0.7元设需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=kx+b因为点A(3,0.7)和点B(4,1)都在y=kx+b上,代入得:0.7=3k+b,1=4k+b解得:k=0.3,b=0.2故需付电话费y(元)与通话时间x(min)之间的函数关系式为:y=0.3x0.2 (x3)当x=8时,y=0.380.2=2.40.2=2.2(元)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力注意自变量
20、的取值范围不能遗漏16已知一次函数y=kx1,请你补充一个条件,使函数图象经过第二、三、四象限【考点】一次函数的性质【专题】开放型【分析】要使一次函数的图象经过第二、三、四象限,又知b0,故只需k0即可【解答】解:因为要使函数图象经过第二、三、四象限,必须k0,b0,而y=kx1中,b=10,所以只需添加条件k0即可故答案为:k0【点评】能够根据k,b的符号正确判断直线所经过的象限二选择题:17下列说法正确的是()A正比例函数是一次函数B一次函数是正比例函数C正比例函数不是一次函数D不是正比例函数就不是一次函数【考点】一次函数的定义;正比例函数的定义【专题】常规题型【分析】根据一次函数和正比例
21、函数的定义条件判断各选项即可【解答】解:A、正比例函数是一次函数,故本选项正确;B、一次函数不一定是正比例函数,故本选项错误;C、正比例函数是一次函数,故本选项错误;D、不是正比例函数有可能是一次函数,如y=x+1,故本选项错误故选A【点评】本题主要考查了一次函数和正比例函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k0,自变量次数为1;正比例函数的定义是形如y=kx(k是常数,k0)的函数,其中k叫做比例系数18下面两个变量是成正比例变化的是()A正方形的面积和它的边长B变量x增加,变量y也随之增加C矩形的一组对边的边长固定,它的周长和另一组对边的边长D圆的周长与它的半径【考点
22、】正比例函数的定义【专题】常规题型【分析】根据正比例函数y=kx的定义条件:k为常数且k0,自变量次数为1,判断各选项,即可得出答案【解答】解:A、正方形的面积=边长的平方,故本选项错误;B、变量x增加,变量y也随之增加,如y=2x,但不是正比例函数,故本选项错误;C、矩形的一组对边的边长固定,则另一组对边的边长也固定,其周长也一定,故本选项错误;D、圆的周长=2半径,符合正比例函数的定义,故本选项正确故选D【点评】本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握19直线y=kx+b经过一、二、四象限,则k、b应满足()Ak0,b0 Bk0,b0 Ck0,b0 Dk0,b0【考点】
23、一次函数图象与系数的关系【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k0时,直线必经过二、四象限,故知k0再由图象过一、二象限,即直线与y轴正半轴相交,所以b0故选:D【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交20已知一次函数y=(m+2)x+m2m4的图
24、象经过点(0,2),则m的值是()A2 B2 C2或3 D3【考点】一次函数图象上点的坐标特征【专题】计算题【分析】把x=0,y=2代入所给函数解析式,得到关于m的方程,求解即可,注意x的系数应不为0【解答】解:y=(m+2)x+m2m4的图象经过点(0,2),m2m4=2,解得m=2或3,m+20,解得m2,m=3,故选D【点评】考查一次函数图象上的点的坐标的特点;用到的知识点为:点在函数解析式上,点的横纵坐标适合该函数解析式注意一次函数中的比例系数应不为021若点A(2a,12a)关于y轴的对称点在第三象限,则a的取值范围是()Aa Ba2 Ca2 Da或a2【考点】关于x轴、y轴对称的点
25、的坐标【分析】根据关于y轴对称点的性质横坐标互为相反数,纵坐标相等,进而求出点A(2a,12a)关于y轴的对称点,再利用第三象限点的性质,即可得出答案【解答】解:点A(2a,12a)关于y轴的对称点为:(a2,12a),且此点在第三象限,解得:故选:C【点评】此题主要考查了关于y轴对称点的性质以及一元一次不等式组的解法,得出关于a的不等式组是解题关键22下列关系式中,表示y是x的正比例函数的是()Ay= By=1 Cy=x+1 Dy=2x【考点】正比例函数的定义【分析】根据形如y=kx (k是常数,k0)是正比例函数,可得答案【解答】解:A、是反比例函数,故A错误;B、是常函数,故B错误;C、
26、是一次函数,故C错误;D、是正比例函数,故正确;故选:D【点评】本题考查了正比例函数,利用了正比例函数的定义23函数y=4x2与y=4x2的交点坐标为()A(2,0) B(0,2) C(0,2) D(2,0)【考点】两条直线相交或平行问题【专题】计算题【分析】根据两直线平行的问题,解方程组的解即为两直线的交点坐标【解答】解:解方程组得,所以直线y=4x2与y=4x2的交点坐标为(0,2)故选B【点评】本题考查了两条直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同24在平面直角
27、坐标系中,直线y=kx+b(k0,b0)不经过哪一象限()A第一象限 B第二象限 C第三象限 D第四象限【考点】一次函数图象与系数的关系【分析】根据一次函数的性质求解【解答】解:k0,b0,直线经过第一、二、四象限故选C【点评】掌握根据k,b的符号正确判断一次函数图象经过的象限25一次函数y=axa(a0)的大致图象是()A B C D【考点】一次函数的图象【分析】因为a的符号不确定,故应分两种情况讨论,再找出符合任一条件的函数图象即可【解答】解:分两种情况:(1)当a0时,一次函数y=axa经过第一、三、四象限,选项A符合;(2)当a0时,一次函数y=axa图象经过第一、二、四象限,无选项符合故选A【点评】本题考查了一次函数的性质,根据图象能正确判断一次项系数以及常数项的符号;根据符号判断判断图经过的象限三、解答题26已知一次函数的图象经过点A(1,3)和点(2,3),(1)求一次函数的解析式;(2)判断点C(2,5)是否在该函数图象上【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征【分析】(1)根据一次函数图象过A(1,3)和点B(2,3),然后将其代入一次函数的解析式,利用待定系数法求该函数的解析式;(2)把)把x=2代入y=2x+1,得出y的值,和C的纵坐标进行比较即
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1