ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:22.90KB ,
资源ID:8900553      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/8900553.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(建筑电气英文论文.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

建筑电气英文论文.docx

1、建筑电气英文论文ARCHITECTURAL AND COLLABORATIVE CONTROL SYSTEMS A COMPLEMENTARY SYMBIOSIS - Looking at todays control system one can find a wide variety of implementations. From pure architectural to collaborative control system (CCS) tool kits to home grown systems and any variation in-between. Decisions o

2、n the type of implementation should be driven by technical arguments Reality shows that financial and sociological reasons form the complete picture. Any decision has its advantages and its drawbacks. Reliability, good documentation and support are arguments for industrial controls. Financial argume

3、nts drive decisions towards collaborative tools. Keeping the hands on the source code and being able to solve problems on your own and faster than industry are the argument for home grown solutions or open source solutions. The experience of many years of operations shows that which solution is the

4、primary one does not matter, there are always areas where at least part of the other implementations exist. As a result heterogeneous systems have to be maintained. The support for different protocols is essential. This paper describes our experience with industrial control systems, PLC controlled t

5、urn key systems, the CCS tool kit EPICS and the operability between all of them.- INTRODUCTION Process controls in general started at DESY in the early 80th with the installation of the cryogenic control system for the accelerator HERA (Hadron-Elektron-Ring-Anlage). A new technology was necessary be

6、cause the existing hardware was not capable to handle standard process controls signals like 4 to 20mA input and output signals and the software was not designed to run PID control loops at a stable repetition rate of 0.1 seconds. In addition sequence programs were necessary to implement startup and

7、 shutdown procedures for the complex cryogenic processes like cold boxes and compete compressor streets. Soon it was necessary to add interfaces to field buses and to add computing power to cryogenic controls. Since the installed D/3 system1 only provided an documented serial connection on a multibu

8、s board, the decision was made to implement a DMA connection to VME and to emulate the multibus boards functionality. The necessary computing power for temperature conversions came from a Motorola MVME 167 CPU and the field bus adapter to the in house SEDAC field bus was running on an additional MVM

9、E 162. The operating system was VxWorks and the application was the EPICS toolkit. Since this implementation was successful it was also implemented for the utility controls which were looking for a generic solution to supervise their distributed PLCs. A SELECTION OF PROCESS CONTROL SYSTEMS AT DESY D

10、CS (D/3) As a result of a market survey the D/3 system from GSE was selected for the HERA cryogenic plant. The decision was fortunate because of the DCS character of the D/3. The possibility to expand the system on the display- and on the I/O side helped to solve the increasing control demands for H

11、ERA. The limiting factor for the size of the system is not the total number of I/O but the traffic on the communication network. This traffic is determined by the total amount of archived data not by the data configured in the alarm system. The technical background of this limitation is the fact tha

12、t archived data are polled from the display servers whereas the alarms are pushed to configured destinations like alarm-files, (printer) queues or displays. SCADA Systems with DCS Features (Cube) The fact that the D/3 system mentioned above had some hard coded limitations with respect to the Y2K pro

13、blem was forcing us to look for an upgrade or a replacement of the existing system. As a result of a call for tender the company Orsi with their product Cube came into play 2. The project included a complete replacement of the installed functionality. This included the D/3 as well as the integration

14、 of the DESY field bus SEDAC and the temperature conversion in VME. The project started promising. But soon technical and organizational problems were pushing the schedule to its limits which were determined by the HERA shutdown scheduled at that time. The final acceptance test at the vendors site s

15、howed dramatic performance problems. Two factors could be identified as the cause of these problems. The first one was related to the under estimated CPU load of the 6th grade polynomial temperature conversion running at 1 Hz. The second one was the additional CPU load caused by the complex function

16、ality of the existing D/3 system. Here it was underestimated that each digital and analog input and output channel had its own alarm limits in the D/3 system. In a SCADA like system as Cube the base functionality of a channel is to read the value and make it available to the system. Any additional f

17、unctionality must be added. Last not least the load on the network for polling all the alarm limits typically for a SCADA system was also driving the network to its limits. Finally the contract with Orsi was cancelled and an upgrade of the D/3 system was the only possible solution. It was finally ca

18、rried out in march 2003.In any case it should be mentioned that the Cube approach had the advantage of a homogeneous configuration environment (for the Cube front end controllers) compared with heterogeneous environments for pure SCADA systems.SCADA (PVSS-II)The H1 experiment at the HERA accelerator

19、 decided to use PVSS-II for an upgrade of their slow control systems3. The existing systems were developed by several members of the H1 collaboration and were difficult to maintain. The decision to use PVSS as a replacement was driven by the results of an extensive survey carried out at CERN by the

20、Joint Controls Project 4. PVSS is a pure Supervisory And Data Acquisition System (SCADA). It provides a set of drivers for several field buses and generic socket libraries to implement communication over TCP/IP. The core element is the so called event manager. It collects the data (mostly by polling

21、) from the I/O devices and provides an event service to the attached management services like: control manager, database manager, user interface, API manager and the built in HTTP server. The PVSS scripting library allows to implement complex sequences as well as complex graphics. Compared with othe

22、r SCADA systems PVSS comes with one basic feature: it provides a true object oriented API to the devices data. One major disadvantage of SCADA systems is the fact that two databases, the one for the PLC and the one for the SCADA system must be maintained. Integrated environments try to overcome this

23、 restriction. EPICS EPICS has emerged at DESY from a problem solver to a fully integrated control system. Starting from the data collector and number cruncher for the cryogenic control system, EPICS made its way to become the core application for the DESY utility group. In addition it is used wherev

24、er data is available through VME boards or by means of Industry Pack (IP) modules. For those cryogenic systems which are not controlled by the D/3 system EPICS is used with its complete functionality. In total about 50 Input Output Controller (IOC) are operational processing about 25 thousand record

25、s. 1 EPICS as a SCADA System The utility group ( water, electrical power, compressed air, heating and air conditioning) is using a variety of PLCs spread out over the whole DESY site. EPICS is used to collect the data from these PLCs over Profibus (FMS and DP) and over Ethernet (Siemens H1 and TCP).

26、 The IOCs provide the interfaces to the buses and collect the data. The built in alarm checking of the EPICS records is used to store and forward alarm states to the alarm handler (alh) of the EPICS toolkit. In addition tools like the channel archiver and the graphic display (dm2k) are used. The def

27、ault name resolution (by UDP broadcast) and the directory server (name server) are used to connectclient and server applications over TCP. All of these are basically SCADA functions. The textual representation of all configuration files ( for the IOC, the graphic tool, the alarm handler and the arch

28、iver) provides a flexible configuration scheme. At DESY the utility group has developed a set of tools to create IOC databases and alarm configuration files from Oracle. This way the controls group provides the service to maintain the EPICS tools and the IOCs while the users can concentrate on the e

29、quipment being controlled. 2 EPICS as a DCS System Besides the basic components of a SCADA system EPICS also provides a full flavoured Input Output Controller (IOC). The IOC provides all of the function a DCS system requires, such as: a standard set of properties implemented in each record, built in

30、 alarm checking processed during the execution of each record; control records like PID etc.; configuration tools for the processing engine. The flexible naming scheme and the default display and alarm properties for each record ease the connection between the operator tools and the IOCs. The flexib

31、le data acquisition supports the poll mode as well as the publish subscribe mode. The latter reduces the traffic drastically. PLCs PLCs provide nowadays the same rich functionality as it was known from stand alone control systems in the past. Besides the basic features like the periodic execution of

32、 a defined set of functions they also allow extensive communication over Ethernet including embedded http servers and different sets of communication programs. Besides the communication processors, display processors can be linked to PLCs to provide local displays which can be comprised as touch pan

33、els for operator intervention and value settings. These kind of PLCs are attractive for turn key systems which are commissioned at the vendors site and later integrated into the customers control system. Intelligent I/O New developments in I/O devices allow to cluster I/O in even smaller groups and

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1