1、高中数学事件的独立性综合测试题附答案语文高中数学事件的独立性综合测试题(附答案)选修2-3 2.2.2 事件的独立性一、选择题1种植两株不同的花卉,若它们的成活率分别为p和q,则恰有一株成活的概率为()Apq2pqBpqpqCpqDpq答案A解析恰有一株成活的概率为p(1q)(1p)qpq2pq,故选A.2打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是()A.1425 B.1225C.34 D.35答案A解析P甲81045,P乙710,所以PP甲P乙1425.3从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为1
2、4,从中任挑一儿童,这两项至少有一项合格的概率是()(假定体型与身体关节构造合格与否相互之间没有影响)A.1320 B.15C.14 D.25答案D解析设“儿童体型合格”为事件A,“身体关节构造合格”为事件B,则P(A)15,P(B)14.又A,B相互独立,则A,B也相互独立,则P(A B)P(A)P(B)453435,故至少有一项合格的概率为P1P(A B)25,故选D.4(2019湖北理,4)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.512 B.12C.712 D.34答案C解析由题意P(A
3、)12,P(B)16,事件A、B中至少有一个发生的概率P11256712.5甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是()Ap1p2Bp1(1p2)p2(1p1)C1p1p2D1(1p1)(1p2)答案B解析设甲解决问题为事件A,乙解决问题为事件B,则恰有一人解决为事件ABA B,由题设P(A)p1,P(B)p2,P(ABA B)P(AB)P(A B)P(A)P(B)P(A)P(B)(1p1)p2p1(1p2)6从甲袋内摸出1个白球的概率为13,从乙袋内摸出1个白球的概率是12,从两个袋内各摸1个球,那么概率为56的事
4、件是()A2个球都是白球B2个球都不是白球C2个球不都是白球D2个球中恰好有1个白球答案C解析从甲袋内摸出白球与从乙袋内摸出白球两事件相互独立,故两个球都是白球的概率为P1131216,两个球不都是白球的概率为P1P156.7(2019广州模拟)在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内,至少有1人去此地的概率是()A.320 B.15C.25 D.920答案C解析解法一:考查相互独立事件的概率公式设“甲去某地”为事件A,“乙去某地”为事件B,则至少1人去此地的概率为PP(A)P(B)P(A)P(B)P(A)P(B)1445341
5、5141525.故选C.解法二:考查对立事件P1P(A)P(B)1344525.8若事件A、B发生的概率都大于零,则()A如果A、B是互斥事件,那么A与B也是互斥事件B如果A、B不是相互独立事件,那么它们一定是互斥事件C如果A、B是相互独立事件,那么它们一定不是互斥事件D如果AB是必然事件,那么它们一定是对立事件答案C解析当事件A、B如图(1)所示时,A与B互斥,但A与B不互斥,故A错;当事件A、B如图(2)时,AB是必然事件,但不是对立事件,故D错;如果A与B相互独立,则A的发生与否对B没有影响,故不是互斥事件;A与B不相互独立时也未必是互斥事件二、填空题9设A、B互不相容,且P(A)0,P
6、(B|A)_,若A、B相互独立,且P(A)0,则P(B|A)_.答案0P(B)解析A、B互不相容,A发生则B一定不发生,从而P(B|A)0;又A、B相互独立时,P(B|A)P(B)10已知P(A)0.3,P(B)0.5,当事件A、B相互独立时,P(AB)_,P(A|B)_.答案0.650.3解析A、B相互独立,P(AB)P(A)P(B)P(A)P(B)0.30.50.30.50.65.P(A|B)P(A)0.3.11一道数学竞赛试题,甲生解出它的概率为12,乙生解出它的概率为13,丙生解出它的概率为14. 由甲、乙、丙三人独立解答此题只有一人解出的概率为_答案1124解析甲生解出,而乙、丙不能
7、解出为事件A1,则P(A1)1211311414,乙生解出,而甲、丙不能解出为事件A2,则P(A2)1311211418,丙生解出,而甲、乙不能解出为事件A3,则P(A3)14112113112.甲、乙、丙三人独立解答此题只有一人解出的概率为P(A1A2A3)14181121124.12(2019重庆文,14)加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为_答案370解析本题考查独立事件,对立事件有关概率的基本知识以及计算方法设加工出来的零件为次品为事件A,则A为加工出来的零件为正品P(A)1P(A)1(11
8、70)(1169)(1168)370.三、解答题13有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验(1)求恰有一件不合格的概率;(2)求至少有两件不合格的概率(精确到0.001)解析设从三种产品中各抽取一件,抽到合格品的事件为A、B、C.(1)P(A)0.90,P(B)P(C)0.95,P(A)0.10,P(B)P(C)0.05.因为事件A、B、C相互独立,恰有一件不合格的概率为:P(ABC)P(ABC)P(ABC)P(A)P(B)P(C)P(A)P(B)P(C)P(A)P(B)P(C)20.900.950.050.100.950.950.176.(2)方法1:至少有
9、两件不合格的概率为P(ABC)P(ABC)P(ABC)P(ABC)0.900.05220.100.050.950.100.0520.012.方法2:三件产品都合格的概率为P(ABC)P(A)P(B)P(C)0.900.9520.812.由(1)知,恰有一件不合格的概率为0.176,所以至少有两件不合格的概率为1P(ABC)0.1761(0.8120.176)0.012.14甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格(1)分别求甲、乙两人考试合格的概率;(2)求甲、乙两人至少有
10、一人考试合格的概率解析(1)设甲、乙两人考试合格的事件分别为A、B,则P(A)C26C14C36C310602019023,P(B)C28C12C38C31056561201415.(2)方法1:因为事件A、B相互独立,所以甲、乙两人考试均不合格的概率为P(AB)P(A)P(B)12311415145.所以甲、乙两人至少有一人考试合格的概率为P1P(AB)11454445.答:甲、乙两人至少有一人考试合格的概率为4445.方法2:因为事件A、B相互独立,所以甲、乙两人至少有一人考试合格的概率为PP(AB)P(AB)P(AB)P(A)P(B)P(A)P(B)P(A)P(B)23115131415
11、2314154445.答:甲、乙两人至少有一人考试合格的概率为4445.15甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112.甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率解析(1)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件由题设条件有P(AB)14,P(BC)112,P(AC)29,即P(A)1P(B)14,P(
12、B)1P(C)112, P(A)P(C)29. 由、得P(B)198P(C),代入得27P(C)251P(C)220.解得P(C)23或 119(舍去)将P(C)23分别代入、可得P(A)13、P(B)14,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13、14、23.(2)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则P(D)1P(D)11P(A)1P(B)1P(C)123341356.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.16某公司招聘员工,指定三门考试课程,有两种考试方案方案一:在三门课程中,至少有两门及格为考试通过;方案
13、二:在三门课程中,随机选取两门,这两门都及格为考试通过假设某应聘者对三门指定课程考试及格的概率分别为a、b、c,且三门课程考试是否及格相互之间没有影响(1)分别求应聘者用方案一和方案二时,考试通过的概率;(2)试比较应聘者在上述两种方案下考试通过的概率的大小(说明理由)解析记该应聘者对三门指定课程考试及格的事件分别为A、B、C,则P(A)a、P(B)b、P(C)c.(1)应聘者用方案一考试通过的概率P1P(ABC)P(ABC)P(ABC)P(ABC)ab(1c)bc(1a)ac(1b)abcabbcca2abc,死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被
14、作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。应聘者用方案二考试通过的概率为要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。P213P(AB)13P(BC)13P(AC)13(abbcca
15、);我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题分析问题解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。(2)因为a、b、c0,1,所以P1P223(abbcca)2abc23ab(1c)bc(1a)ac(1b)0,故P1P2.即采用第一种方案,该应聘者通过的概率大
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1