ImageVerifierCode 换一换
格式:DOCX , 页数:32 ,大小:27.34KB ,
资源ID:8750813      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/8750813.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数理统计公式大全.docx)为本站会员(b****7)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数理统计公式大全.docx

1、数理统计公式大全第一章 随机事件和概率1排列组合公式 从m个人中挑出n个人进行排列的可能数。从m个人中挑出n个人进行组合的可能数。2加法和乘法原理加法原理两种方法均能完成此事:m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,那么这件事可由m+n 种方法来完成。乘法原理两个步骤分别不能完成这件事:mn某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,那么这件事可由mn 种方法来完成。3一些常见排列重复排列和非重复排列有序对立事件至少有一个顺序问题4随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果

2、不止一个,但在进行一次试验之前却不能断言它出现哪个结果,那么称这种试验为随机试验。试验的可能结果称为随机事件。5根本领件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的局部事件组成的。这样一组事件中的每一个事件称为根本领件,用 来表示。根本领件的全体,称为试验的样本空间,用 表示。一个事件就是由 中的局部点根本领件 组成的集合。通常用大写字母A,B,C,表示事件,它们是 的子集。为必然事件,为不可能事件。不可能事件的概率为零,而概率为零的事件不一定是不可能事件;同理,必

3、然事件的概率为1,而概率为1的事件也不一定是必然事件。6事件的关系与运算关系:如果事件A的组成局部也是事件B的组成局部,A发生必有事件B发生:如果同时有 , ,那么称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:A B,或者A+B。属于A而不属于B的局部所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。A、B同时发生:AB,或者AB。AB=,那么表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。根本领件是互不相容的。-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。运算:结合率

4、:A(BC)=(AB)C A(BC)=(AB)C分配率:(AB)C=(AC)(BC) (AB)C=(AC)(BC)德摩根率:,7概率的公理化定义设为样本空间,为事件,对每一个事件都有一个实数P(A),假设满足以下三个条件:1 0P(A)1,2 P() =13 对于两两互不相容的事件,有常称为可列完全可加性。那么称P(A)为事件的概率。8古典概型1 ,2 。设任一事件,它是由 组成的,那么有P(A)= =9几何概型假设随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个根本领件可以使用一个有界区域来描述,那么称此随机试验为几何概型。对任一事件A,。其中L为几何度量长度、

5、面积、体积。10加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)0时,P(A+B)=P(A)+P(B)11减法公式P(A-B)=P(A)-P(AB)当B A时,P(A-B)=P(A)-P(B)当A=时,P( )=1- P(B)12条件概率定义 设A、B是两个事件,且P(A)0,那么称 为事件A发生条件下,事件B发生的条件概率,记为 。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如P(/B)=1 P( /A)=1-P(B/A)13乘法公式乘法公式:更一般地,对事件A1,A2,An,假设P(A1A2An-1)0,那么有。14独立性两个事件的独立性设事件、满足,那么称事件

6、、是相互独立的。假设事件、相互独立,且,那么有假设事件、相互独立,那么可得到与、与、与也都相互独立。必然事件和不可能事件与任何事件都相互独立。与任何事件都互斥。多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。对于n个事件类似。15全概公式设事件满足1两两互不相容,2,那么有。16贝叶斯公式设事件,及满足1 ,两两互不相容,0,1,2,2 ,那么,i=1,2,n。此公式即为贝叶斯公式。,通常叫先验概率。 ,通常称为后验概率。

7、贝叶斯公式反映了“因果的概率规律,并作出了“由果朔因的推断。17伯努利概型我们作了次试验,且满足u 每次试验只有两种可能结果,发生或不发生;u 次试验是重复进行的,即发生的概率每次均一样;u 每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。这种试验称为伯努利概型,或称为重伯努利试验。用表示每次试验发生的概率,那么发生的概率为,用表示重伯努利试验中出现次的概率,。第二章 随机变量及其分布1离散型随机变量的分布律设离散型随机变量 的可能取值为Xk(k=1,2,)且取各个值的概率,即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2,,那么称上式为离散型随机变量 的概率分

8、布或分布律。有时也用分布列的形式给出:。显然分布律应满足以下条件:1 , , 2 。2连续型随机变量的分布密度设 是随机变量 的分布函数,假设存在非负函数 ,对任意实数 ,有,那么称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。密度函数具有下面4个性质:1 。2 。3离散与连续型随机变量的关系积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。4分布函数设 为随机变量, 是任意实数,那么函数称为随机变量X的分布函数,本质上是一个累积函数。 可以得到X落入区间 的概率。分布函数 表示随机变量落入区间 ,x内的概率。分布函数具有如下性质:1 ;

9、2 是单调不减的函数,即 时,有 ;3 , ;4 ,即 是右连续的;5 。对于离散型随机变量, ;对于连续型随机变量, 。5八大分布0-1分布P(X=1)=p, P(X=0)=q二项分布在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,那么 可能取值为 。, 其中 ,那么称随机变量 服从参数为 , 的二项分布。记为 。当 时, , ,这就是0-1分布,所以0-1分布是二项分布的特例。泊松分布设随机变量 的分布律为, , ,那么称随机变量 服从参数为 的泊松分布,记为 或者P( )。泊松分布为二项分布的极限分布np=,n。超几何分布随机变量X服从参数为n,N,M的超

10、几何分布,记为H(n,N,M)。几何分布,其中p0,q=1-p。随机变量X服从参数为p的几何分布,记为G(p)。均匀分布设随机变量的值只落在a,b内,其密度函数在a,b上为常数 ,即axb 其他,那么称随机变量在a,b上服从均匀分布,记为XU(a,b)。分布函数为 axb0, xb。当ax1x2b时,X落在区间内的概率为。指数分布 ,0, ,其中,那么称随机变量X服从参数为的指数分布。X的分布函数为 , x0。记住积分公式:正态分布设随机变量的密度函数为, ,其中、为常数,那么称随机变量服从参数为、的正态分布或高斯Gauss分布,记为。具有如下性质:1 的图形是关于对称的;2 当时, 为最大值

11、;假设,那么的分布函数为。参数、时的正态分布称为标准正态分布,记为,其密度函数记为, ,分布函数为。是不可求积函数,其函数值,已编制成表可供查用。(-x)1-(x)且(0) 。如果 ,那么 。6分位数下分位表: ;上分位表: 。7函数分布离散型 的分布列为 ,的分布列 互不相等如下:,假设有某些 相等,那么应将对应的 相加作为 的概率。连续型先利用X的概率密度fX(x)写出Y的分布函数FY(y)P(g(X)y),再利用变上下限积分的求导公式求出fY(y)。第三章 二维随机变量及其分布1联合分布离散型如果二维随机向量 X,Y的所有可能取值为至多可列个有序对x,y,那么称 为离散型随机量。设 =X

12、,Y的所有可能取值为 ,且事件 = 的概率为pij,称为 =X,Y的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:YXy1y2yjx1p11p12p1jx2p21p22p2jxipi1这里pij具有下面两个性质:1pij0i,j=1,2,;2连续型对于二维随机向量 ,如果存在非负函数 ,使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D=(X,Y)|axb,cyx1时,有Fx2,yF(x1,y);当y2y1时,有F(x,y2) F(x,y1);3Fx,y分别对x和y是右连续的,即45对于.4离散型与连续型的关系5边缘分布离散型X的边缘分布为;Y的边缘分布为。连续型X

13、的边缘分布密度为Y的边缘分布密度为6条件分布离散型在X=xi的条件下,Y取值的条件分布为在Y=yj的条件下,X取值的条件分布为连续型在Y=y的条件下,X的条件分布密度为;在X=x的条件下,Y的条件分布密度为7独立性一般型F(X,Y)=FX(x)FY(y)离散型有零不独立连续型f(x,y)=fX(x)fY(y)直接判断,充要条件:可别离变量正概率密度区间为矩形二维正态分布0随机变量的函数假设X1,X2,Xm,Xm+1,Xn相互独立, h,g为连续函数,那么:hX1,X2,Xm和gXm+1,Xn相互独立。特例:假设X与Y独立,那么:hX和gY独立。例如:假设X与Y独立,那么:3X+1和5Y-2独立

14、。8二维均匀分布设随机向量X,Y的分布密度函数为其中SD为区域D的面积,那么称X,Y服从D上的均匀分布,记为X,YUD。例如图3.1、图3.2和图3.3。y1 D1O1 x图3.1yD211 O 2x图3.2yD3dcOa b x图3.39二维正态分布设随机向量X,Y的分布密度函数为其中 是5个参数,那么称X,Y服从二维正态分布,记为X,YN由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即XN但是假设XN ,(X,Y)未必是二维正态分布。10函数分布Z=X+Y根据定义计算:对于连续型,fZ(z)两个独立的正态分布的和仍为正态分布 。n个相互独立的正态分布的线性组合,仍服

15、从正态分布。,Z=max,min(X1,X2,Xn)假设 相互独立,其分布函数分别为 ,那么Z=max,min(X1,X2,Xn)的分布函数为:分布设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和的分布密度为我们称随机变量W服从自由度为n的 分布,记为W ,其中所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。分布满足可加性:设那么t分布设X,Y是两个相互独立的随机变量,且可以证明函数的概率密度为我们称随机变量T服从自由度为n的t分布,记为Tt(n)。F分布设 ,且X与Y独立,可以证明 的概率密度函数为我们称随机变量F服从第一个自由度为n1,第二个自由度

16、为n2的F分布,记为Ff(n1, n2).第四章 随机变量的数字特征1一维随机变量的数字特征离散型连续型期望期望就是平均值设X是离散型随机变量,其分布律为P( )pk,k=1,2,n,要求绝对收敛设X是连续型随机变量,其概率密度为f(x),要求绝对收敛函数的期望Y=g(X)Y=g(X)方差D(X)=EX-E(X)2,标准差,矩对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即k=E(Xk)= , k=1,2, .对于正整数k,称随机变量X与EX差的k次幂的数学期望为X的k阶中心矩,记为 ,即= , k=1,2, .对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原

17、点矩,记为vk,即k=E(Xk)=k=1,2, .对于正整数k,称随机变量X与EX差的k次幂的数学期望为X的k阶中心矩,记为 ,即=k=1,2, .切比雪夫不等式设随机变量X具有数学期望EX=,方差DX=2,那么对于任意正数,有以下切比雪夫不等式切比雪夫不等式给出了在未知X的分布的情况下,对概率的一种估计,它在理论上有重要意义。2期望的性质1 E(C)=C2 E(CX)=CE(X)3 E(X+Y)=E(X)+E(Y),4 E(XY)=E(X) E(Y),充分条件:X和Y独立; 充要条件:X和Y不相关。3方差的性质1 D(C)=0;E(C)=C2 D(aX)=a2D(X); E(aX)=aE(X

18、)3 D(aX+b)= a2D(X); E(aX+b)=aE(X)+b4 D(X)=E(X2)-E2(X)5 D(XY)=D(X)+D(Y),充分条件:X和Y独立; 充要条件:X和Y不相关。 D(XY)=D(X)+D(Y) 2E(X-E(X)(Y-E(Y),无条件成立。而E(X+Y)=E(X)+E(Y),无条件成立。4常见分布的期望和方差期望方差0-1分布p二项分布np泊松分布几何分布超几何分布均匀分布指数分布正态分布n2nt分布0(n2)5二维随机变量的数字特征期望函数的期望方差协方差对于随机变量X与Y,称它们的二阶混合中心矩 为X与Y的协方差或相关矩,记为 ,即与记号 相对应,X与Y的方差

19、DX与DY也可分别记为 与 。相关系数对于随机变量X与Y,如果DX0, D(Y)0,那么称为X与Y的相关系数,记作 有时可简记为 。 | |1,当| |=1时,称X与Y完全相关:完全相关而当 时,称X与Y不相关。以下五个命题是等价的: ;cov(X,Y)=0;E(XY)=E(X)E(Y);D(X+Y)=D(X)+D(Y);D(X-Y)=D(X)+D(Y).协方差矩阵混合矩对于随机变量X与Y,如果有 存在,那么称之为X与Y的k+l阶混合原点矩,记为 ;k+l阶混合中心矩记为:6协方差的性质(i) cov (X, Y)=cov (Y, X);(ii) cov(aX,bY)=ab cov(X,Y);

20、(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);(iv) cov(X,Y)=E(XY)-E(X)E(Y).7独立和不相关i 假设随机变量X与Y相互独立,那么 ;反之不真。ii 假设X,YN ,那么X与Y相互独立的充要条件是X和Y不相关。第五章 大数定律和中心极限定理1大数定律切比雪夫大数定律设随机变量X1,X2,相互独立,均具有有限方差,且被同一常数C所界:DXiC(i=1,2,),那么对于任意的正数,有 特殊情形:假设X1,X2,具有相同的数学期望EXI=,那么上式成为伯努利大数定律设是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,那么对于

21、任意的正数,有 伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即这就以严格的数学形式描述了频率的稳定性。辛钦大数定律设X1,X2,Xn,是相互独立同分布的随机变量序列,且EXn=,那么对于任意的正数有2中心极限定理列维林德伯格定理设随机变量X1,X2,相互独立,服从同一分布,且具有相同的数学期望和方差: ,那么随机变量的分布函数Fn(x)对任意的实数x,有此定理也称为独立同分布的中心极限定理。棣莫弗拉普拉斯定理设随机变量 为具有参数n, p(0p1)的二项分布,那么对于任意实数x,有3二项定理假设当 ,那么超几何分布的极限分布为二项分布。4泊松定理假设当

22、 ,那么其中k=0,1,2,n,。二项分布的极限分布为泊松分布。第六章 样本及抽样分布1数理统计的根本概念总体在数理统计中,常把被考察对象的某一个或多个指标的全体称为总体或母体。我们总是把总体看成一个具有分布的随机变量或随机向量。个体总体中的每一个单元称为样品或个体。样本我们把从总体中抽取的局部样品 称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时, 表示n个随机变量样本;在具体的一次抽取之后, 表示n个具体的数值样本值。我们称之为样本的两重性。样本函数和统计量

23、设 为总体的一个样本,称 为样本函数,其中 为一个连续函数。如果 中不包含任何未知参数,那么称 为一个统计量。常见统计量及其性质样本均值样本方差样本标准差样本k阶原点矩样本k阶中心矩, , ,其中 ,为二阶中心矩。2正态总体下的四大分布正态分布设 为来自正态总体 的一个样本,那么样本函数t分布设 为来自正态总体 的一个样本,那么样本函数其中t(n-1)表示自由度为n-1的t分布。设 为来自正态总体 的一个样本,那么样本函数其中 表示自由度为n-1的 分布。F分布设 为来自正态总体 的一个样本,而 为来自正态总体 的一个样本,那么样本函数其中表示第一自由度为 ,第二自由度为 的F分布。3正态总体下分布的性质与 独立。第七章 参数估计1点估计矩估计设总体X的分布中包含有未知数 ,那么其分布函数可以表成 它的k阶原点矩 中也包含了未知参数 ,即 。又设 为总体X的n个样本值,其样本的k阶原点矩为这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩的原那么建立方程,即有由上面的m个方程中,解出的m个未知参数 即为参数 的矩估计量。假设 为 的矩估计, 为连续函数,那么 为 的矩估计。极大似然估计当总体X为连

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1