ImageVerifierCode 换一换
格式:DOCX , 页数:40 ,大小:37.14KB ,
资源ID:8683531      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/8683531.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(计量经济学作业.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

计量经济学作业.docx

1、计量经济学作业XY8055100658570110801207911584130981409512590907510574160110150113165125145108180115225140200120240145185130220152210144245175260180190135205140265178270191230137250189第一次作业第一题:下列数据中,X表示家庭收入,Y表示家庭支出,请对如下数据运用戈德菲尔德-匡特检验。第二题:X代表职工的工龄,Y代表薪水。要求:1. 通过散点图或残差图对样本进行初步观察。2. 对可能存在的问题进行检验。3. 采取措施消除问题。4.

2、写出最终表达式。XY0.5690002.5705004.5740506.5826008.59143910.58312712.58470014.58260116.59328618.59040020.598200231000002699662301160123485200第一题:步骤:(1)、将样本数据排序,分组,剔除中间样本 ,然后做OLS回归 第一组: 8055857090751006510574110801158412079125901309814095Dependent Variable: YMethod: Least SquaresDate: 04/18/11 Time: 08:52Sa

3、mple: 1 11Included observations: 11Y=C(1)+C(2)*XCoefficientStd. Errort-StatisticProb.C(1)12.5369510.538701.1896100.2646C(2)0.6059110.0952716.3598670.0001R-squared0.817990Mean dependent var78.63636Adjusted R-squared0.797767S.D. dependent var12.87069S.E. of regression5.787989Akaike info criterion6.512

4、413Sum squared resid301.5074Schwarz criterion6.584757Log likelihood-33.81827Hannan-Quinn criter.6.466810F-statistic40.44791Durbin-Watson stat2.272765Prob(F-statistic)0.000131第二组:205140210144220152225140230137240145245175250189260180265178Dependent Variable: YMethod: Least SquaresDate: 04/18/11 Time:

5、 08:54Sample: 1 11Included observations: 11Y=C(1)+C(2)*XCoefficientStd. Errort-StatisticProb.C(1)-36.6018740.67131-0.8999430.3916C(2)0.8296260.1700964.8774050.0009R-squared0.725518Mean dependent var161.0000Adjusted R-squared0.695020S.D. dependent var21.48022S.E. of regression11.86244Akaike info crit

6、erion7.947598Sum squared resid1266.458Schwarz criterion8.019942Log likelihood-41.71179Hannan-Quinn criter.7.901995F-statistic23.78908Durbin-Watson stat1.178680Prob(F-statistic)0.000875(2): F=1266.458/301.5074=4.2004给定a=5%查表,得临界值: F0.05(9,9)=2.97判断F大于F0.05(9,9)否定两组子样本方差相同的假设,从而该总体随机项存在异方差性。第二题:做散点图:D

7、ependent Variable: YMethod: Least SquaresDate: 04/18/11 Time: 09:04Sample: 1 24Included observations: 24Y=C(1)+C(2)*XCoefficientStd. Errort-StatisticProb.C(1)-84.2480311.17191-7.5410600.0000C(2)7.7836110.62113412.531290.0000R-squared0.877118Mean dependent var51.27438Adjusted R-squared0.871532S.D. de

8、pendent var38.30328S.E. of regression13.72881Akaike info criterion8.156526Sum squared resid4146.567Schwarz criterion8.254697Log likelihood-95.87831Hannan-Quinn criter.8.182571F-statistic157.0333Durbin-Watson stat0.602173Prob(F-statistic)0.000000由散点图可看出,该样本可能存在异方差性。作G-Q检验:将大样本分为两个小样本, 第二次上机步骤:先对全样本作整

9、体回归:Dependent Variable: YMethod: Least SquaresDate: 04/18/11 Time: 09:04Sample: 1 24Included observations: 24Y=C(1)+C(2)*XCoefficientStd. Errort-StatisticProb.C(1)-84.2480311.17191-7.5410600.0000C(2)7.7836110.62113412.531290.0000R-squared0.877118Mean dependent var51.27438Adjusted R-squared0.871532S.

10、D. dependent var38.30328S.E. of regression13.72881Akaike info criterion8.156526Sum squared resid4146.567Schwarz criterion8.254697Log likelihood-95.87831Hannan-Quinn criter.8.182571F-statistic157.0333Durbin-Watson stat0.602173Prob(F-statistic)0.000000将样本分组,分别作OLS回归,YX15.8710.817.7311.919.0413.121.611

11、4.917.212.518.8513.716.7111.314.8110.419.0214.220.5515.224.2917.124.3816.9第一组:Dependent Variable: YMethod: Least SquaresDate: 04/18/11 Time: 08:42Sample: 1 12Included observations: 12Y=C(1)+C(2)*XCoefficientStd. Errort-StatisticProb.C(1)1.1498011.2470100.9220460.3782C(2)1.3349530.09122414.633830.000

12、0R-squared0.955387Mean dependent var19.17167Adjusted R-squared0.950926S.D. dependent var3.063924S.E. of regression0.678744Akaike info criterion2.213866Sum squared resid4.606933Schwarz criterion2.294684Log likelihood-11.28320Hannan-Quinn criter.2.183944F-statistic214.1491Durbin-Watson stat1.237672Pro

13、b(F-statistic)0.000000第二组:27.817.243.0118.4665.6519.967.0520.388.2521.578.1520.991.48522.11110.323.8105.3323.189.9919.2119.2425.1114.2724.3Dependent Variable: YMethod: Least SquaresDate: 04/18/11 Time: 08:44Sample: 1 12Included observations: 12Y=C(1)+C(2)*XCoefficientStd. Errort-StatisticProb.C(1)-1

14、47.585028.43609-5.1900610.0004C(2)10.831851.3256228.1711470.0000R-squared0.869737Mean dependent var83.37708Adjusted R-squared0.856710S.D. dependent var28.45566S.E. of regression10.77149Akaike info criterion7.742695Sum squared resid1160.250Schwarz criterion7.823513Log likelihood-44.45617Hannan-Quinn

15、criter.7.712773F-statistic66.76765Durbin-Watson stat1.798463Prob(F-statistic)0.000010RSS(R)=4146.567RSS(U)=RSS1+RSS2=4.606933+1160.250 =1164.856933 (4146.567-1164.856933)/12 F= = 4.2662035 1164.856933/(24-2*2)给定显著性水平5%,F0.05(12,20)=2.28F所以,不显著,拒绝原假设。第三次作业步骤:对整体样本作OLS回归:Dependent Variable: YMethod: L

16、east SquaresDate: 04/25/11 Time: 08:27Sample: 1 30Included observations: 30Y=C(1)+C(2)*X1+C(3)*X2+C(4)*X3+C(5)*X4+C(6)*X5CoefficientStd. Errort-StatisticProb.C(1)15.3836914.017301.0974790.2833C(2)0.0207520.0128651.6131100.1198C(3)-0.0021780.133207-0.0163490.9871C(4)0.0343380.0135352.5370080.0181C(5)

17、-0.0037900.004617-0.8209530.4198C(6)0.0117740.3982550.0295650.9767R-squared0.949200Mean dependent var45.63967Adjusted R-squared0.938616S.D. dependent var21.74352S.E. of regression5.387113Akaike info criterion6.382753Sum squared resid696.5037Schwarz criterion6.662992Log likelihood-89.74129Hannan-Quin

18、n criter.6.472404F-statistic89.68776Durbin-Watson stat0.983723Prob(F-statistic)0.000000用软件得到参差序列:Last updated: 04/25/11 - 08:32Modified: 1 30 / makeresid-2.387916742786327-3.626222161418159-6.831392318290824-2.9562125828705524.0820951169858878.7055956662165242.933711819027032-1.3743818562942562.8555

19、907084027792.5120149260854350.9061041373137081.2181295483755831.130*2603.0753*-4.706987305005896.010*-2.727309400155605-3.452771889540848-2.6047627777539557.683285351384584.0875*5.786371769840066-0.181*704897.4683729606522042.206659904875522-2.243012885258935-6.286316222062766-10.063598007776852.478

20、0210291062593.474021064943272 然后以et作为解释变量,做回归检验:Dependent Variable: UMethod: Least SquaresDate: 04/25/11 Time: 08:49Sample (adjusted): 2 30Included observations: 29 after adjustmentsU=C(1)*U(-1)CoefficientStd. Errort-StatisticProb.C(1)0.5041170.1642263.0696440.0047R-squared0.251578Mean dependent var

21、0.082342Adjusted R-squared0.251578S.D. dependent var4.966333S.E. of regression4.296443Akaike info criterion5.787326Sum squared resid516.8637Schwarz criterion5.834474Log likelihood-82.91623Hannan-Quinn criter.5.802092Durbin-Watson stat1.727824Dependent Variable: UMethod: Least SquaresDate: 04/25/11 T

22、ime: 08:51Sample (adjusted): 3 30Included observations: 28 after adjustmentsU=C(1)*U(-1)+C(2)*U(-2)CoefficientStd. Errort-StatisticProb.C(1)0.6287380.1887293.3314250.0026C(2)-0.2686160.188790-1.4228230.1667R-squared0.299136Mean dependent var0.214791Adjusted R-squared0.272180S.D. dependent var5.00503

23、6S.E. of regression4.269915Akaike info criterion5.809814Sum squared resid474.0366Schwarz criterion5.904972Log likelihood-79.33740Hannan-Quinn criter.5.838905Durbin-Watson stat2.047637由上可知,存在着一阶滞后相关性。然后,用广义差分法重新估计模型:Dependent Variable: YT-0.628738*YT(-1)Method: Least SquaresDate: 04/25/11 Time: 09:21Sample (adjusted): 6 30Included observations: 25 after adjustmentsYT-0.628738*YT(-

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1