ImageVerifierCode 换一换
格式:DOCX , 页数:60 ,大小:2.20MB ,
资源ID:8325117      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/8325117.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(生物化学z辅导笔记.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

生物化学z辅导笔记.docx

1、生物化学z辅导笔记第四章 蛋白质化学第一节:蛋白质的分子组成一、 蛋白质的元素组成C、H、O和N是组成蛋白质的主要元素,N是蛋白质的特征性元素。蛋白质含N约16%,可依此特性分析样品蛋白含量:mgPr = mgN X 6. 25 二、 氨基酸的结构氨基酸是蛋白质的结构单位,用于合成蛋白质的氨基酸有20种,属于L-一氨基酸,它们称为标准氨基酸、三、 氨基酸的分类标准氨基酸包括非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电荷R基氨基酸和带负电荷R基氨基酸。含S氨基酸,含羟基氨基酸,酸性氨基酸,碱性氨基酸四、 氨基酸的理化性质(一) 紫外吸收特征:色氨酸最强,28Onm (二) 两性解离与等电

2、点氨基酸在溶液中的解离程度受PH值影响,在某一pH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相等,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点(pl)。(三) 茚三酮反应氨基酸与水合茚三酮发生氧化反应和缩合反应, 最终生成蓝紫色化合物,该化合物在570nm波长处存在吸收峰。茚三酮反应可以用于氨基酸的定量分析。五、 蛋白质的分类 根据组成,分为单纯蛋白质和缀合蛋白质。 单纯蛋白质完全由氨基酸构成,如核糖核酸酶和糜蛋白酶。 缀合蛋白质含有非氨基酸成分,所含的非氨基酸成分称为辅基。第二节:蛋白质的分子结构蛋白质的结构包括一维结构、二级结构、三级结构和四级结构。其中二级结构、三

3、级结构和四级结构称为蛋白质的空间结构或构象。一、 肽在蛋白质分子内,一个氨基酸的-羧基与另一个氨基酸的-氨基脱水形成的化学键称为肽键。氨基酸通过肽键连接而成的分子称为肽。体内一些重要的肽:人体内存在着许多具有不同生物活性的寡肽和多肽。谷胱甘肽(GSH)是由谷氨酸、半胱氨酸和甘氨酸通过肽键连接构成的三肽,是机体内重要的抗氧化剂。二、 蛋白质的一级结构蛋白质分子内氨基酸的排列顺序称为蛋白质的一级结构,包括二硫键的位置。一级结构是空间构象和生物学功能的基础。三、 蛋白质的二级结构二级结构研究在一级结构中互相邻近的氨基酸残基的空间关系,即多肽链主链的局部构象,不涉及侧链的空间排布。尤其是那些有规律的周

4、期性结构。二级结构主要有螺旋、折叠、转角和无规卷曲等。(一)肽单元与肽平面(二)螺旋(三) 折叠(四) 转角(五)无规卷曲(六)超二级结构(一)肽单元与肽平面肽键结构的4个原子与两个C构成一个肽单元(-C-CO-NH- C-)。在肽单元中C-N具有部分双键性质,不能自由旋转。肽单元的6个原子基本处于同一平面上,称为肽平面或肽键平面。(二)螺旋hclix右手螺旋3.6个氨基酸/圈,螺距=0.15*3.6=0.54nm,直径为0.5nm。氢键保持螺旋稳定。R侧链分布在螺旋外侧,其形状大小及电荷影响-螺旋的形成。(三) 折叠一种较伸展、呈锯齿状的肽链结构。R侧链交错排列在折叠平面的两侧。氢键维持构象

5、的稳定。有顺向平行和反向平行(四) 转角turn位于肽链进行回折时的转折部位,由4个氨基酸构成,其中第二个氨基酸常为脯氨酸,第一个氨基酸的羰基O与第四个氨基酸的氨基H形成氢键。(五)无规卷曲蛋白质多肽链一些肽段的构象没有规律性,这类构象称为无规卷曲。(六)超二级结构超二级结构又称为模体/基序,是指邻近的二级结构单元进一步聚集和组合在一起,形成规则的二级结构聚集体。四、 蛋白质的三级结构。是指一条完整的蛋白质多肽链上彼此远离的一些氨基酸依靠非共价键及少量共价键结合,使多肽链在二级结构基础上进一步折叠形成特定的空间结构。三级结构特点不同蛋白质的三级结构差异很大,不像二级结构种容易寻找共同特征、但都

6、具有以下特点: 疏水基团在分子内部,不与水接触; 亲水基团在分子表面,形成紧密结构; 三级结构由众多氢键、疏水键、部分离子键及少量共价键维持稳定。但最主要的是疏水键。五、 蛋白质的四级结构。多亚基蛋白的亚基按特定的空间排布结合在一起,构成该蛋白质的四级结构、亚基之间没有共价键连接,每一个亚基都是一条具有相对独立的三级结构的多肽链。六、 维持蛋白质结构的化学键(一) 二硫键。(二) 氢键(三) 疏水键(四) 离子键(五) 范德华力第三节:蛋白质结构与功能的关系一、 蛋白质的一级结构和功能的关系(一) 蛋白质的一级结构决定其构象:一级结构是空间构象和生物学功能的基础。(二) 同源蛋白质存在序列同源

7、现象(三) 改变蛋白质的一级结构可以直接影响其功能镰状细胞病患者的血红蛋白是Hbs,Hbs的亚基N端6号谷氨酸被缬氨酸取代、二、 蛋白质的构象和功能的关系蛋白质分子的构象直接决定其生物学功能第四节:蛋白质的理化性质。一、 一般性质(一) 紫外吸收特征蛋白质的肽键结构对220nm以下的紫外线有强吸收,其所含的色氨酸和酪氨酸对280nm的紫外线有强吸收。280nm紫外线的吸光度与其浓度成正比,常用于蛋白质的定量测定(二) 两性解离与等电点在某一pH值下,蛋白质的净电荷为零,则该pH值称为蛋白质的等电点(pl)、如果溶液pHpl,则蛋白质带正电荷;如果溶液PHpl,则蛋白质带负电荷。蛋白质等电点由其

8、氨基酸组成决定,含碱性氨基酸越多其等电点越高。 (三) 呈色反应1、 茚三酮反应:蛋白质分子内含有游离氨基,所以也与水合茚三酮反应呈色。2、 双缩脲反应:双缩脲由2分子尿素脱氨缩合生成,称双缩脲反应。蛋白质分子内的肽键也能发生双缩脲反应,在碱性溶液中与Cu2+作用呈紫红色。3、 酚试剂反应:酚试剂含有磷钼酸一磷钨酸,与蛋白质的呈色反应比较复杂、二、 大分子特性(一) 半透膜与透析蛋白质分子不易透过半透膜,可以通过透析将蛋白质溶液所含的小分子杂质除去,使蛋白质得到纯化。(二) 沉降与沉降系数(三) 蛋白质溶液是胶体溶液稳定因素=水化膜+同性电荷(四)沉淀蛋白质溶液是一种比较稳定的胶体溶液,电荷与

9、水化膜是其主要稳定因素、如果这两种因素被破坏,就会导致蛋白质沉淀、蛋白质沉淀的方法有盐析、重金属离子沉淀、生物碱试剂以及某些酸类沉淀、有机溶剂沉淀、1、 盐析在蛋白质溶液中加入大量的中性盐以破坏其胶体溶液稳定性而使其沉淀,这种方法称为盐析。常用的中性盐有(NH4)2S04、Na2SO4和Nacl等。盐析得到的蛋白质沉淀经过透析脱盐后仍具有生物活性2、 重金属盐沉淀调节蛋白质溶液的PH值使之大于等电点,此时蛋白质分子带负电荷,易与重金属离子Hg2+、Pb2+,Cu2+和Ag+等结合而沉淀、重金属离子沉淀常导致蛋白质变性.3、 生物碱试剂沉淀以及某些酸类沉淀蛋白质蛋白质可以与生物碱试剂(如苦味酸、

10、钨酸和鞣酸)以及某些酸(如三氯醋酸和过氯酸)结合并沉淀,沉淀的条件是PH值小于等电点,这样蛋白质带正电荷,易于与酸根阴离子结合成盐。4、 有机溶剂沉淀:变性比较慢。(五)变性与复性在一些物理因素或化学因素作用下,天然蛋白质的特定构象被破坏,从而导致其理化性质改变,生物活性丧失,这一现象被称为蛋白质变性。一般认为蛋白质变性的本质是其非共价键和二硫键被破坏,所以蛋白质变性只破坏其构象,不改变其一级结构。导致蛋白质变性的因素包括物理因素和化学因素,物理因素有高温、高压、振荡、紫外线和超声波等;化学因素有强酸、强碱、乙醇、丙酮、尿素、重金属盐和去污剂(如十二烷基硫酸钠)等。在临床上,上述变性因素常用于

11、消毒灭菌。当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原来的构象及功能,这一现象称为蛋白质复性。变性、沉淀和凝固:三者之间的关系蛋白质变性、沉淀和凝固之间有很密切的关系,蛋白质变性导致构象破坏,活性丧失,但不一定沉淀;蛋白质沉淀是胶体溶液稳定因素被破坏的结果,构象不一定改变,活性也不一定丧失,所以不一定变性;蛋白质凝固是变性的特殊类型,是变性蛋白质进一步形成较坚固的凝块凝固,是蛋白质变性后进一步发展的不可逆结果。第五章 核酸化学核酸是生物大分子,包括DNA和RNA。DNA是遗传物质,绝大多数存在于细胞核内,含量最稳定。RNA包括mRNA,tRNA,rRNA,核酶和小分子RNA

12、,RNA的主要功能是参与遗传信息的复制与表达。 rRNA是核糖体的结构成分,核糖体是蛋白质合成“机器” mRNA(信使RNA)把遗传信息从DNA带到核糖体,指导蛋白质合成 tRNA在蛋白质合成中运输氨基酸,并把核酸语言翻译成蛋白质语言。第一节:核酸的分子组成核苷酸是核酸的水解产物,是核酸的基本结构单位。构成DNA的基本单位是脱氧核苷酸,构成RNA的基本单位是核苷酸。核苷酸由磷酸、戊糖(核糖和脱氧核糖)和碱基(腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶和胸腺嘧啶)组成,DNA和RNA的组成差别主要在戊糖和嘧啶碱基。RNA特别是tRNA含有较多的稀有碱基。一、核苷酸的组成核苷酸由磷酸、戊糖(核糖和脱氧核糖)和

13、碱基(腺嘌呤、鸟嘌呤、胞嘧啶、尿嘧啶和胸腺嘧啶)组成。二、核苷酸的结构在核甘酸中,碱基与戊糖以N-糖苷键连接,磷酸与戊糖以磷酸酯键连接,磷酸还可以通过酸酐键连接第二、第三个磷酸。三磷酸腺苷 ATP三、核苷酸的功能核苷酸的功能包括合成核酸,为生命活动提供能量,参与其他物质合成、构成酶的辅助因子,调节代谢等。第二节:核酸的分子结构核酸的结构包括一级结构、二级结构和三级结构一、 核酸的一级结构核酸的一级结构是指核酸的碱基组成和碱基序列,核苷酸以3,5一磷酸二酯键连接形成核酸、核酸链有方向性,5端为头,3端为尾二、 DNA的二级结构不同生物DNA的碱基组成符合Chargaff法则DNA的碱基组成存在物

14、种差异,没有组织差异,即不同物种,其DNA碱基组成不同,同一个体不同组织的DNA具有相同的碱基组成:DNA的碱基组成不随个体年龄、营养、环境改变而改;不同物种DNA碱基组成均存在以下关系:A=T,G=C,A|G=T|C(一) DNA的二级结构是双螺旋: Watson与Crick提出的双螺旋模型的要点(要出题必是一个大题):1、 DNA是由2股链反向互补构成的双链结构:如图2、 2股链进一步形成右手双螺旋结构:碱基平面与螺旋轴垂直,糖环平面与碱基平面接近垂直,与螺旋轴平行;双螺旋直径2nm,每1个螺旋含 10个碱基对,螺距3.4nm,相邻碱基对之间的轴向距离0.34nm;双螺旋表面有2条沟槽;大

15、沟宽1.2nm,小沟宽0.6nm。如图3、 氢键和碱基堆积力维系DNA双螺旋结构的稳定性:碱基之间的氢键维系双链结构的横向稳定性,而碱基平面之间的碱基堆积力则维系双螺旋结构的纵向稳定性。三、 DNA的三级结构在二级结构基础上,DNA双螺旋进一步扭曲或盘曲形成更加复杂的结构,即为DNA的三级结构。(一) 环状DNA的超螺旋结构(原核生物)(二) 真核生物的核酸-蛋白结构真核生物细胞核DNA与RNA、蛋白质构成染色体,其结构更复杂。核小体是其一个结构单位,由组蛋白与DNA构成。四、 RNA的种类和分子结构 种类:RNA包括mRNA,tRNA,rRNA及核酶等。 结构:RNA多为单链结构,可以通过链

16、内互补构成局部双螺旋、鼓泡、膨胀环和发夹结构。碱基配对原则是A对U,G对C,但配对不象DNA那么严格。(一) mRNA1、 mRNA的特点:种类多,含量少,寿命短。2、 大多数真核生物的mRNA在5-端有“帽子结构”。3、 mRNA的3端有一poly(A)尾(多聚腺苷酸尾)(二) tRNA大小为7393nt,含有较多的稀有碱基,3端含有CCA-OH序列,5端大多是鸟苷酸,二级结构呈三叶草形,三级结构呈倒L形。前一个是三叶草形,后一个是倒L形。(三) rRNArRNA是细胞内含量最多的RNA,与蛋白质构成核糖体,参与蛋白质合成(四) 核酶由活细胞合成的、具有催化作用的RNA称为核酶第三节:核酸的

17、理化性质一、 核酸的紫外吸收核苷酸、核酸对260nm紫外线有强吸收,该性质可用于核苷酸、核酸的定量分析。二、 变性与复性1、 DNA变性:指双链DNA解旋、解链,形成无规线团,从而发生性质改变(如黏度下降、沉降速度加快、紫外吸收增加等) 2、 DNA复性:缓慢降低温度,恢复生理条件,DNA又会自发互补结合,重新形成原来的双螺旋结构,称为复性,也称退火3、 增色效应:单链DNA紫外吸收比双链DNA高,所以DNA变性导致其紫外吸收增加,称为增色效应。4、 减色效应:复性导致变性DNA恢复成天然构象时,其紫外吸收降低,称为减色效应。注意:3-4会考名词解释5、 解链温度:50%DNA变性解链时的温度

18、称为解链温度,又称变性温度、融解温度或熔点。G一C含量越高,其解链温度越高。三、 核酸杂交不同来源的核酸链因存在互补序列而形成互补双链结构,这一过程就是核酸杂交过程。第六章 酶第一节:酶的分子结构身体内的酶有两类,蛋白质类(酶)与核酸类(核酶)蛋白质类酶是活细胞合成的,具有催化作用的蛋白质。一、 酶的分子组成单线酶:只有蛋白质部分结合酶:有蛋白质部分+非蛋白质部分组成如下图所示结合酶的蛋白质部分是脱辅基酶蛋白,非蛋白质部分是辅助因子,这两部分加在一起,才是有活性的全酶。其中脱辅基酶蛋白决定催化反应的特异性,辅助因子决定反应的类型辅助因子有两类,小分子有机化合物(B族维生素参与辅酶辅基的构成)和

19、无机金属离子。见下图二、 酶的活性中心酶的活性中心是酶蛋白构象的一个特定区域,必需基团比较集中,能与底物特异地结合,并催化底物发生反应生成产物。见图活性中心内有两类必需集团,一类是结合基团,一类是催化基团辅助因子就是指活性中心内的非氨基酸成分。三、 酶按结构的分类1、 单体酶:2、 寡聚酶:3、 多酶体系:由几种代谢上相互联系的酶结合在一起形成的具有特定构像的多酶复合物,称为多酶体系,如丙酮酸脱氢酶系。4、 多功能酶第二节:酶促反应的特点和机制一、 酶促反应的特点酶不同于一般催化剂的特点:(一) 酶的催化效率极高。(二) 酶促反应具有很高的特异性。(三) 酶蛋白不稳定。(四) 酶的活性可以调节

20、。(一) 酶的催化效率极高酶促反应的机制,是极大的降低反应的活化能。使活化分子的数量增加,反应加快,见下图(二) 酶促反应具有很高的特异性。1、 绝对特异性:一种酶只对一种底物起作用,对其它任何底物,包括底物修饰的产特都不起作用。见下图2、 相对特异性:见下图3、 立体异构特异性:对立体异构体中的一种起作用。见下图(三) 酶蛋白不稳定:因为在本质上是蛋白质,所以极易受蛋白质的失活因素的影响而变性失活。(四) 酶的活性可以调节:酶促反应速度可以受各种因素调节,以适应代谢需要。如控制酶蛋白的总量,改变酶蛋白的结构等。二、 酶促反应的机制(一) 决定酶促反应高效率的机制1、 邻近效应与定向排列2、

21、表面效应3、 多元催化4、 张力(二) 决定酶促反应特异性的机制1、 锁钥学说2、 诱导契合说:酶的活性中心在结构上是柔性的,即具有可塑性或弹性。当底物与活性中心接触时,酶蛋白的构象会发生变化,这种变化使活性中心的必需基团正确的排列和定向,适宜与底物结合并催化反应。3、 三点附着说:酶与作用物结合的大小形态要匹配,要有亲和性。三、 酶原与酶原的激活(可以问名词或问答)有些酶在细胞内合成或初分泌时只是无活性前体,需水解一个或几个特殊的肽键,使酶的构象发生改变,而表现出酶的活性。这种无活性的前体称为酶原。酶原激活的实质是酶的活性中心形成或暴露。酶原与酶原激活的生理意义:酶原为酶安全的转运与贮存形式

22、。四、 同工酶同工酶是指能催化同一化学反应,但酶蛋白的分子组成、结构、性质都不同的一组酶。例如,乳酸脱氢酶(LDH)第三节:酶促反应动力学一、 酶浓度对酶促反应速度的影响在酶促反应中,如果保持其他条件不变,底物浓度远高于酶浓度,足以使酶饱和,则随着酶浓度的提高,酶促反应速度也相应加快,并且成正比例关系。以反应速度V对酶浓度E作图,可以得到一条过原点的直线。二、 底物浓度对酶促反应速度的影响米氏方程V为在不同底物浓度时的反应速度,Vmax为最大反应速度S为底物浓度,Km为米氏常数,Km=(k2+k3)/k1。当底物浓度极低即S Km时,Km+SS,VVmax,即反应速度接近最大反应速度,底物浓度

23、已经基本不再影响反应速度。(一) 米氏常数的意义(几乎是必考)1、 Km值是反应速度为最大反应速度一半时的底物浓度。2、 Km值是酶的特征性常数;取决于酶的性质、底物种类、环境条件(温度、离子强度、pH),而与酶的浓度无关、3、 Km值近似反映酶与底物的亲和力:一种酶有几种底物就有几个Km值,其中Km值最小的底物在同等条件下反应最快,该底物称为酶的天然底物或最适底物。天然底物或最适底物Km值最小。4、 反映激活剂或抑制剂的存在:激活剂/抑制剂可以改变Km值(二) Km 值和Vmax值的测定采用双倒数作图法(又称为林-贝氏作图法)。三、 温度对酶促反应速度的影响温度对酶促反应速度具有双重影响:一

24、方面升高温度可以增加活化分子数目,使酶促反应速度提高;另一方面温度超过一定范围会导致酶蛋白变性失活,使酶促反应速度降低。酶促反应速度最快时的反应温度称为该酶促反应的最适温度。降低温度可降低酶促反应速度,但不会使酶破坏四、 pH值对酶促反应速度的影响使酶促反应最快时的pH值,称为酶的最适pH值。最适pH值和最适温度都不是酶的特征常数,它受底物的浓度、缓冲溶液的种类和浓度以及酶的纯度等许多因素的影响。要注意的是,虽然我们体内的酶的最适PH通常与其环境一致,但不都是生理PH。五、 抑制剂对酶促反应速度的影响抑制剂能抑制酶促反应,但区别于变性剂(无特异性)。根据抑制剂与酶结合的紧密程度的不同,酶的抑制

25、作用分两类(不可逆抑制与可逆抑制)。(一) 不可逆性抑制作用。概念:抑制剂与酶活性中心必需基团共价结合,不能用透析、超滤等物理方法将其除去。常见抑制剂:羟基酶(丝氨酸酶)抑制剂,巯基酶抑制剂。1、 巯基酶抑制剂:2、 丝氨酸酶抑制剂胆碱酯酶是丝氨酸酶,催化乙酰胆碱水解。失活会造成乙酰胆碱积累,引起胆碱能神经兴奋性增加的中毒症状(如心跳变慢、瞳孔缩小、流涎、多汗和呼吸困难等)。下图为有机磷杀虫剂的作用原理,抑制了乙酰胆碱的水解而引起中毒。(二) 可逆性抑制作用可逆性抑制作用的抑制剂通常以非共价键与酶或中间产物结合,使酶活性降低甚至丧失。采用透析和超滤的方法可以将抑制剂除去,使酶活性恢复,所以这种

26、抑制作用是可逆的可逆性抑制作用根据抑制剂一底物关系分类1、 竞争性抑制作用2、 非竞争性抑制作用3、 反竞争性抑制作用1、 竞争性抑制作用:见下图抑制剂结构与底物结构相似,互相竞争酶的活性中心。抑制作用的强弱取决于S和I的相对浓度及它们与酶的相对亲和力。通过增加底物浓度可以减轻竞争性抑制程度。在竞争性抑制作用中,Km值增加,Vmax不变。其中的典型是有以下两个丙二酸对琥珀酸脱氢酶的抑制属于典型的竞争性抑制作用。(因为结构相似)磺胺类药物和磺胺增效剂是通过竞争性抑制作用抑制细菌生长繁殖的典型代表。主要是抑制二氢叶酸(磺胺类药物)和四氢叶酸(磺胺增效剂)的合成。见下图2、 非竞争性抑制作用:抑制剂

27、(I)不与底物(S)竞争酶(E)的活性中心,而是与活性中心之外的必需基团相结合,使酶的构象改变而丧失活性。增加底物浓度不能解除非竞争性抑制剂对酶的抑制作用。在非竞争性抑制作用中,Km值不变,Vmax减小。3、 反竞争性抑制作用抑制剂(I)只与中间产物(ES)结合,使酶(E)失去催化活性。见下图在反竞争性抑制作用中,Km值减小,Vmax降低。三种可逆性抑制作用的比较见下表作用特征竞争性抑制作用非竞争性抑制作用反竞争性抑制作用与I结合的组分EE、ESESKm变化增大不变减小Vmax变化不变降低降低六、 激活剂对酶促反应速度的影响激活剂大多为金属离子,少数为阴离子,第四节:酶的命名分类和活性测定第五

28、节:酶与医学的关系一、 酶与疾病发生的关系酶缺陷所致的疾病:如酪氨酸酶缺陷引起白化病, 6-磷酸葡萄糖脱氢酶缺陷引起蚕豆病。酶活性被抑制所致的疾病:如有机磷农药敌百虫,敌敌畏等抑制胆碱酯酶活性(不可逆抑制作用)。二、 酶在疾病诊断中的应用三、 酶在疾病治疗中的应用第七章:维生素水溶性维生素名称活性形式主要功能缺乏症VitC抗坏血酸羟化,氧化还原坏血病VitB1TPP-酮酸脱氢酶系的辅助因子脚气病VitB2FMN、FAD脱氢酶的辅助因子口角炎、阴囊皮炎VitPP(烟酸)NAD、NADP脱氢酶的辅助因子癞皮病VitB6磷酸吡哆醛(胺)氨基转移酶脱羧酶辅助因子少见泛酸CoA、ACP酰基转移酶的辅助因

29、子无生物素羧基生物素羧化酶的辅助因子皮炎叶酸四氢叶酸一碳单位转移酶辅助因子巨幼红细胞贫血VitB12甲钴胺素、5脱氧腺苷钴胺素参与一碳单位代谢恶性贫血(也是四氢叶酸缺乏的症状)脂溶性维生素名称活性形式主要功能缺乏症VitA11-顺视黄醛、视黄酸合成感光物质、促进生长发育、上皮完整夜盲症、干眼病VitD调节钙磷代谢促进成骨佝偻病、骨软化症VitE生育酚生殖、搞氧化VitKVitK凝血因子合成凝血障碍第八章 生物氧化第一节:概述生物氧化是指营养物质在体内氧化分解,最终生成CO2和H2O、并释放能量满足生命活动需要的过程,又称为组织呼吸或细胞呼吸。生物氧化的意义是提供生命活动所需的能量。一、 生物氧化的特点(一) 条件温和、细胞内酶促反应。(二) 能量逐步释放(与体外彻底氧化释放总能量相等)。(三) CO2的生成。(四) 水的生成。二、 生物氧化的过程营养物质的氧化分解过程只在第一阶段有各自的代谢途径,但都生成乙酰COA(乙酰辅酶A)而在第二(三羧酸循环)、第三阶段都是一样的。三、 CO2的生成方式(有机物脱羧)(一) 单纯脱羧:只有脱羧反应,没有氧化反应。1、 -单纯脱羧:脱下来的羧基在碳原子上,氨基酸的脱羧属于此2、 -单纯脱羧:脱下来的羧基在碳原子上(二) 氧化脱羧1、 -氧化脱羧:脱下来的羧基在碳原子上2、 -氧化脱羧:脱下来的羧基在碳原子上

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1