ImageVerifierCode 换一换
格式:DOCX , 页数:30 ,大小:27.25KB ,
资源ID:8308446      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/8308446.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(带式输送机的外文文献翻译.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

带式输送机的外文文献翻译.docx

1、带式输送机的外文文献翻译Int J Adv Manuf Technol (2005) 25: 551559DOI 10.1007/s00170-003-1843-3S.H. Masood B. Abbas E. Shayan A. KaraAn investigation into design and manufacturing of mechanical conveyors systemsfor food processingReceived: 29 March 2003 / Accepted: 21 June 2003 / Published online: 23 June 2004 S

2、pringer-Verlag London Limited 2004Abstract This paper presents the results of a research investi-gation undertaken to develop methodologies and techniques thatwill reduce the cost and time of the design, manufacturing andassembly of mechanical conveyor systems used in the food andbeverage industry.

3、The improved methodology for design andproduction of conveyor components is based on the minimisa-tion of materials, parts and costs, using the rules of design formanufacture and design for assembly. Results obtained on a testconveyor system verify the benets of using the improved tech-niques. The o

4、verall material cost was reduced by 19% and theoverall assembly cost was reduced by 20% compared to conven-tional methods.Keywords Assembly Cost reduction Design DFA DFM Mechanical conveyor1 IntroductionConveyor systems used in the food and beverage industry arehighly automated custom made structure

5、s consisting of a largenumber of parts and designed to carry products such as foodcartons, drink bottles and cans in fast production and assemblylines. Most of the processing and packaging of food and drink in-volve continuous operations where cartons, bottles or cans are re-quired to move at a cont

6、rolled speed for lling or assembly oper-ations. Their operations require highly efcient and reliable me-chanical conveyors, which range from overhead types to oor-mounted types of chain, roller or belt driven conveyor systems.In recent years, immense pressure from clients for low costbut efcient mec

7、hanical conveyor systems has pushed con-veyor manufacturers to review their current design and assemblymethods and look at an alternative means to manufacture moreeconomical and reliable conveyors for their clients. At present,S.H. Masood (u) B. Abbas E. Shayan A. KaraIndustrial Research Institute S

8、winburne,Swinburne University of Technology,Hawthorn, Melbourne 3122, AustraliaE-mail: *.aumost material handling devices, both hardware and software, arehighly specialised, inexible and costly to congure, install andmaintain 1. Conveyors are xed in terms of their locations andthe conveyor belts acc

9、ording to their synchronised speeds, mak-ing any changeover of the conveyor system very difcult and ex-pensive. In todays radically changing industrial markets, there isa need to implement a new manufacturing strategy, a new systemoperational concept and a new system control software and hard-ware d

10、evelopment concept, that can be applied to the design ofa new generation of open, exible material handling systems 2.Ho and Ranky 3 proposed a new modular and recongurable2D and 3D conveyor system, which encompasses an open re-congurable software architecture based on the CIM-OSA (opensystem archite

11、cture) model. It is noted that the research in thearea of improvement of conveyor systems used in beverage in-dustry is very limited. Most of the published research is directedtowards improving the operations of conveyor systems and inte-gration of system to highly sophisticated software and hardwar

12、e.This paper presents a research investigation aimed at im-proving the current techniques and practices used in the de-sign, manufacturing and assembly of oor mounted type chaindriven mechanical conveyors in order to reduce the manufactur-ing lead time and cost for such conveyors. Applying the con-c

13、ept of concurrent engineering and the principles of design formanufacturing and design for assembly 4, 5, several criticalconveyor parts were investigated for their functionality, materialsuitability, strength criterion, cost and ease of assembly in theoverall conveyor system. The critical parts wer

14、e modied andredesigned with new shape and geometry, and some with newmaterials. The improved design methods and the functionality ofnew conveyor parts were veried and tested on a new test con-veyor system designed, manufactured and assembled using thenew improved parts.2 Design for manufacturing and

15、 assembly (DFMA)In recent years, research in the area of design for manufacturingand assembly has become very useful for industries that are con-552sidering improving their facilities and manufacturing methodol-ogy. However, there has not been enough work done in the areaof design for conveyor compo

16、nents, especially related to the is-sue of increasing numbers of drawing data and re-engineeringof the process of conveyor design based on traditional methods.Emphasise standardisationUse the simplest possible operationsUse operations of known capabilityMinimise setups and interventionsUndertake eng

17、ineering changes in batchesA vast amount of papers have been published that have investi-gated issues related to DFMA and applied to various methodolo-gies to achieve results that proved economical, efcient and costeffective for the companies under investigation.The main classications of DFMA knowle

18、dge can be iden-tied as (1) General guidelines, (2) Company-specic best prac-tice or (3) Process and or resource-specic constraints. Generalguidelines refer to generally applicable rules-of-thumb, relat-ing to a manufacturing domain of which the designer shouldbe aware. The following list has been c

19、ompiled for DFMguidelines 6.These design guidelines should be thought of as “optimalsuggestions”. They typically will result in a high-quality, low-cost, and manufacturable design. Occasionally compromisesmust be made, of course. In these cases, if a guideline goesagainst a marketing or performance

20、requirement, the next bestalternative should be selected 7.Company-specic best practice refers to the in-house designrules a company develops, usually over a long period of time, andwhich the designer is expected to adhere to. These design rulesare identied by the company as contributing to improved

21、 qualityand efciency by recognising the overall relationships betweenDesign for a minimum number of partsDevelop a modular designMinimise part variationsDesign parts to be multifunctionalDesign parts for multiuseDesign parts for ease of fabricationAvoid separate fastenersMaximise compliance: design

22、for ease of assemblyMinimise handling: design for handling presentationEvaluate assembly methodsEliminate adjustmentsAvoid exible components: they are difcult to handleUse parts of known capabilityAllow for maximum intolerance of partsUse known and proven vendors and suppliersUse parts at derated va

23、lues with no marginal overstressMinimise subassembliesparticular processes and design decisions. Companies use suchguidelines as part of the training given to designers of productsrequiring signicant amounts of manual assembly or mainte-nance. Note that most of the methodologies are good at eitherbe

24、ing quick and easy to start or being more formal and quanti-tative. For example, guidelines by Boothroyd and Dewhurst 8on DFA are considered as being quantitative and systematic.Whereas the DFM guidelines, which are merely rules of thumbderived from experienced professionals, are more qualitative an

25、dless formal 9.3 Conventional conveyor system designDesign and manufacturing of conveyor systems is a very com-plex and time-consuming process. As every conveyor system isa custom-made product, each project varies from every otherproject in terms of size, product and layout. The system designFig. 1.

26、 Layout of conveyor sys-tem for labelling plasic bottles553is based on client requirements and product specications. More-over, the system layout has to t in the space provided by thecompany. The process of designing a layout for a conveyor sys-tem involve revisions and could take from days to month

27、s or insome instances years. One with the minimum cost and maximumclient suitability is most likely to get approval.Figure 1 shows a schematic layout of a typical conveyorsystem installed in a production line used for labelling ofplastic bottles. Different sections of the conveyor system areidentied

28、 by specic technical names, which are commonlyused in similar industrial application. The “singlizer” sec-tion enables the product to form into one lane from multiplelanes. The “slowdown table” reduces the speed of productonce it exits from ller, labeller, etc. The “mass ow” sec-tion is used to keep

29、 up with high-speed process, e.g., ller,labeller, etc. The “transfer table” transfers the direction of prod-uct ow. The purpose of these different conveyor sections isthus to control the product ow through different processingmachines.A typical mechanical conveyor system used in food and bev-erage a

30、pplications consists of over two hundred mechanical andelectrical parts depending on the size of the system. Some ofthe common but essential components that could be standard-ised and accumulated into families of the conveyor system areside frames, spacer bars, end plates, cover plates, inside bendp

31、lates, outside bend plates, bend tracks and shafts (drive, tail andslave). The size and quantity of these parts vary according to thelength of conveyor sections and number of tracks correspond-ing to the width and types of chains required. The problems andshortcomings in the current design, manufacturing and assemblyof mechanical conveyors are varied, but include:4 Areas of impr

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1