ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:213.96KB ,
资源ID:8252362      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/8252362.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(RC电路的应用.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

RC电路的应用.docx

1、RC电路的应用RC电路的应用摘要:RC电路在模拟电路、脉冲数字电路中得到广泛的应用,由于电路的形式以及信号源和R,C元件参数的不同,因而组成了RC电路的各种应用形式:微分电路、积分电路、耦合电路、滤波电路及脉冲分压器。关键词:RC电路;微分、积分电路;耦合电路;滤波电路;脉冲分压器在模拟及脉冲数字电路中,常常用到由电阻R和电容C组成的RC电路,在这些电路中,电阻R和电容C的取值不同、输入和输出关系以及处理的波形之间的关系,产生了RC电路的不同应用,下面分别谈谈微分电路、积分电路、耦合电路、脉冲分压器以及滤波电路。 1.RC微分电路如图1所示,电阻R和电容C串联后接入输入信号VI,由电阻R输出信

2、号VO,当RC数值与输入方波宽度tW之间满足:RCt1),电容C的电压按指数规律快速充电上升,输出电压随之按指数规律下降(因VOVIVCVmVC),经过大约3(RC)时,VCVm,VO0,(RC)的值愈小,此过程愈快,输出正脉冲愈窄。t=t2时,VI由Vm0,相当于输入端被短路,电容原先充有左正右负的电压Vm开始按指数规律经电阻R放电,刚开始,电容C来不及放电,他的左端(正电)接地,所以VOVm,之后VO随电容的放电也按指数规律减小,同样经过大约3后,放电完毕,输出一个负脉冲。只要脉冲宽度tW(510),在tW时间内,电容C已完成充电或放电(约需3),输出端就能输出正负尖脉冲,才能成为微分电路

3、,因而电路的充放电时间常数必须满足:(1/51/10)tW,这是微分电路的必要条件。由于输出波形VO与输入波形VI之间恰好符合微分运算的结果VO=RC(dVI/dt),即输出波形是取输入波形的变化部分。如果将VI按傅里叶级展开,进行微分运算的结果,也将是VO的表达式。他主要用于对复杂波形的分离和分频器,如从电视信号的复合同步脉冲分离出行同步脉冲和时钟的倍频应用。2.RC耦合电路图1中,如果电路时间常数(RC)tW,他将变成一个RC耦合电路。输出波形与输入波形一样。如图3所示。 (1)在t=t1时,第一个方波到来,VI由0Vm,因电容电压不能突变(VC=0),VO=VR=VI=Vm。(2)t1t

4、tW,电容C缓慢充电,VC缓慢上升为左正右负,VO=VR=VIVC,VO缓慢下降。(3)t=t2时,VO由Vm0,相当于输入端被短路,此时,VC已充有左正右负电压=(VI/)tW,经电阻R非常缓慢地放电。(4)t=t3时,因电容还来不及放完电,积累了一定电荷,第二个方波到来,电阻上的电压就不是Vm,而是VR=Vm-VC(VC0),这样第二个输出方波比第一个输出方波略微往下平移,第三个输出方波比第二个输出方波又略微往下平移,最后,当输出波形的正半周“面积”与负半周“面积”相等时,就达到了稳定状态。也就是电容在一个周期内充得的电荷与放掉的电荷相等时,输出波形就稳定不再平移,电容上的平均电压等于输入

5、信号中电压的直流分量(利用C的隔直作用),把输入信号往下平移这个直流分量,便得到输出波形,起到传送输入信号的交流成分,因此是一个耦合电路。以上的微分电路与耦合电路,在电路形式上是一样的,关键是tW与的关系,下面比较一下与方波周期T(TtW)不同时的结果,如图4所示。在这三种情形中,由于电容C的隔直作用,输出波形都是一个周期内正、负“面积”相等,即其平均值为0,不再含有直流成份。当T时,电容C的充放电非常缓慢,其输出波形近似理想方波,是理想耦合电路。 当T时,电容C有一定的充放电,其输出波形的平顶部分有一定的下降或上升,不是理想方波。当tW,这种电路称为积分电路。在电容C两端(输出端)得到锯齿波

6、电压,如图6所示。(3)t=t2时,VI由Vm0,相当于输入端被短路,电容原先充有左正右负电压VI(VItW是本电路必要条件,因为他是在方波到来期间,电容只是缓慢充电,VC还未上升到Vm时,方波就消失,电容开始放电,以免电容电压出现一个稳定电压值,而且越大,锯齿波越接近三角波。输出波形是对输入波形积分运算的结果,他是突出输入信号的直流及缓变分量,降低输入信号的变化量。4.RC滤波电路(无源)在模拟电路,由RC组成的无源滤波电路中,根据电容的接法及大小主要可分为低通滤波电路(如图7)和高通滤波电路(如图8)。(1)在图7的低通滤波电路中,他跟积分电路有些相似(电容C都是并在输出端),但他们是应用

7、在不同的电路功能上,积分电路主要是利用电容C充电时的积分作用,在输入方波情形下,来产生周期性的锯齿波(三角波),因此电容C及电阻R是根据方波的tW来选取,而低通滤波电路,是将较高频率的信号旁路掉(因XC=1/(2fC),f较大时,XC较小,相当于短路),因而电容C的值是参照低频点的数值来确定,对于电源的滤波电路,理论上C值愈大愈好。(2)图8的高通滤波电路与微分电路或耦合电路形式相同。在脉冲数字电路中,因RC与脉 宽tW的关系不同而区分为微分电路和耦合电路;在模拟电路,选择恰当的电容C值,就可以有选择性地让较高频的信号通过,而阻断直流及低频信号,如高音喇叭串接的电容,就是阻止中低音进入高音喇叭

8、,以免烧坏。另一方面,在多级交流放大电路中,他也是一种耦合电路。5.RC脉冲分压器当需要将脉冲信号经电阻分压传到下一级时,由于电路中存在各种形式的电容,如寄生电容,他相当于在负载侧接有一负载电容(如图9),当输入一脉冲信号时,因电容CL的充电,电压不能突变,使输出波形前沿变坏,失真。为此,可在R1两端并接一加速电容C1,这样组成一个RC脉冲分压器(如图10)。(1)t=0+时,电容视为短路,电流只流经C1,CL,VO由C1和CL分压得到: 但是,任何信号源都有一定的内阻,以及一些电路的需要,通常采取过补偿的办法,如电视信号中,为突出传送图像的轮廓,采用勾边电路,就是通过加大C1的取值。其他关于

9、RC电路的说明:适当选取RC电路的时间常数,利用电容极板间的储能变化,可实现信号的积分与微分。RC积分电路如图8-1所示。电路应满足条件: = RC tW式中 tW为输入脉冲宽度RC微分电路如图8-2所示。电路应满足条件: = RC tW 利用RC电路的暂态过程,可使数字电路产生一个暂时的稳态。选择不同的RC值,可选择不同的导通频带。2a0D1U1i-Q$wK(观察一个方波信号通过微分电路,微分后的波形只在输入波形的突变处尖脉冲,在其他处为零。这直观上说明微分电路对低频信号的抑制作用。&z04Q#o!U2G N同样,观察一个方波信号通过积分电路,积分后的波形在输入波形的突变处平滑变化。这直观上

10、说明微分电路对高频信号的抑制作用1).微分电路 微分电路的电路图如图1所示,其中电容为C,电阻为R,uI为输入电压,uo为输出电压。当R1/C 时,。所以由上式可见,输出电压是输入电压的微分。注意:满足上述微分关系的前提是,必须符合R1/C的条件。图1 微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等

11、于输入波形宽度的1/10就可以了。 2).积分电路:积分电路的电路图如图2所示。当R1/C 时,。所以可见输出电压是输入电压的积分。注意:上述积分关系必须满足R1/C的条件。图2 积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 图Z1604所示的RC微分电路是脉冲技术中常用电路之一。它与RC耦合电路(如图Z1603所示)的区别就在于前者的时间常数(=RC)很小。假定该电路的输入信号是图Z1604(a)所示

12、的矩形波,那么,在t时刻电容C因电压不能突变而使u()=0,所以,此时刻R上的输出电压uo等于E (见图Z1604(c)。此后u按指数规律上升到E ,相应地,uo由 E 下降至零。在t时刻,外加信号为零u 仍为E,致使输出电压跳变到- E,随着电容放电,u逐渐上升到零。待下一个矩形脉冲来到后,再重复以上过程。u、u的波形分别如图Z1604(b)(c)所示。 由此可知,微分电路的特点是能突出反映输入信号的跳变部分。根据这个特点,可把信号中跳变部分转变为尖脉冲而加以利用。当(=RC)()tk时,就可把该电路视为微分电路。RC实用电路RC组合件所谓RC组合件就是由电阻器和电容器组合在一起,用一个封装

13、,引出数根引脚,成为一个整体的元件,尺寸一般为8mm8mm1mm。一个形RC高频滤波器电路,可以用来将高频信号去除,它是由一个2千欧的电阻和两只0.01微法电容构成。RC消火花电路在一些感性负载(直流电动机或磁头)电路中的开关部位并联电阻和电容。由于感性元件在电路通断的时候会产生感应电动势来阻碍元件两端电流突变的特性,这一电动势很大且加在开关上,由于开关在快要接通或刚要断开时开关的两极靠得很近,这时的开关便形成空气电容结构,感应电动势给这个开关空气电容器充电并很快击穿这个电容器,击穿电容器时便会产生火花,这样开关的接通或断开时都会看到有火花,电路开关产生火花会对人身安全存在隐患,并且对开关的接

14、触部分进行灼伤,影响开关的使用寿命。为了保护开关不打火,在开关电路上并联一个电阻和电容,这时开关在通断时产生的感应电动势就流到开关并联电路中的电阻器和电容器上,开关并联电路上的电容器容量一般都很大,吸收感应电动势大量电能,这样加到开关上的感应电动势就大大减少了,从而避免产生火花。RC录音高频补偿电路在恒流录音电阻电路中,给恒流电阻器再并联上电容器就成了RC录音高频补偿电路。电路中电阻器R就是恒流录音电阻,电容器C便是录音高频补偿电容。电阻与电容并联组成RC补偿电路,电容与录音磁头的感性阻抗串联组成了LC串联谐振补偿电路。在RC并联电路的阻抗特性曲线中可以看出,当录音信号频率低于转折频率时,阻抗

15、不变,所以低于转折频率的录音信号其流过录音磁头的录音电流大小不变;当录音信号频率高高于转折频率后,该RC并联电路的总阻抗在下降,说明频率高于转折频率的录音高频信号电流在增大,且录音信号频率越高,其录音信号电流越大,这样可以达到提升录音高频信号的目的。在电容器和磁头串联谐振电路中,其谐振频率设在录音信号高于上限频率且靠近上限频率处,由于LC串联谐振电路在谐振时阻抗最小,这样可以使高频录音信号电流增大许多,达到提升录音高频信号的目的。RC低频噪声切除电路由于机内传声器BM装在录音机的机壳上,而机壳上还同时装有扬声器,在扬声器发出声音时会引起机壳的振动,这一振动将引起机内传声器BM的振动,导致BM输

16、出一个频率很低的振动噪声,从而机内传声器工作出现“轰隆”的低频噪声,为此要在机内传声器输入电路中加入RC串联电路来进行低频噪声切除,以消除这一低频的噪声。在RC串联电路的阻抗特性曲线中可以看出,随着输入信号频率的降低其总阻抗而增大,这样便对机内低频噪声呈现高阻抗特性,阻碍低频噪声电流的通过,达到了切除低频噪声的目的。虽然这样能够消除低频噪声,但对低频有用信号也有一定影响,这样也就成了消除低频噪声的主要矛盾了。RC去加重电路去加重电路出现在调频收音机电路和电视机伴音通道电路中。调频收音机不像调幅收音机那样噪声在不同频率下的大小相等,而是随着频率升高而增大,这就说明调频的高频噪声严重。为了改善高频

17、段的信噪比,调频发射机在发射调频信号之前,对音频信号中的高频信号要进行预加重,即先提升高频段的信号,在调频收音电路中则设置去加重电路,以还原音频信号原来的特性。在去加重电路中,同时也将高频噪声去除。去加重电路有单声道和双声道两种之分,单声道去加重电路接在鉴频器后面,而双声道去加重电路要在鉴频器后面接立体声解码电路后再才接去加重电路。去加重电路实际上就是一个电阻和电容组成的分压电路,由于电容对高频信号的容抗比较低,所以对发射机进行预加重的高频信号的阻抗小,电容器就会吸收高频信号的预加重信号达到去加重作用。场积分电路黑白电视和彩色电视机扫描电路中的场积分电路是采用两节积分电路组成。行与场同步信号的

18、幅度相等,但宽度不同,行同步脉冲窄,场同步脉冲宽。而场积分电路就是要从行场同步复合信号中取去场同步信号,场同步信号脉冲宽持续时间比较长,输出信号电压就大,而行同步则相反,行同步信号脉冲窄持续时间短,输出信号电压就小。经过场积分电路(即两次积分电路)后行同步信号电压两次减小少达到衰减作用,从而选场同步信号RC电路的应用微分电路 电路结构如图W-1,微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远

19、远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。 积分电路 电路结构如图J-1,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。限幅电路 图X是一个限幅电路,在输入端没信号输入时由于二极管D反向连接,所以输出电压为零。当有脉冲信号输入时,如果这个脉冲的幅度足以电压源E时,D就导通,这样电路将输出脉冲的最大值限制在E+0.6上(0.6是D的正向导通压降),也即E+0.6是此限幅器的门限电压。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1