ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:26.44KB ,
资源ID:8109339      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/8109339.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(巨磁电阻实验报告docx.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

巨磁电阻实验报告docx.docx

1、巨磁电阻实验报告docx巨磁电阻实验报告【目的要求】1、 了解 GMR效应的原理2、 测量 GMR模拟传感器的磁电转换特性曲线3、 测量 GMR的磁阻特性曲线4、 用 GMR传感器测量电流5、 用 GMR梯度传感器测量齿轮的角位移,了解 GMR转速(速度)传感器的原理【原理简述】根据导电的微观机理, 电子在导电时并不是沿电场直线前进, 而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。 称电子在两次散射之间走过的平均路程为平均自由程, 电子散射几率小,则平均自由程长,电阻率低。电阻定律 R= l/S 中,把电阻率

2、 视为常数,与材料的几何尺度无关, 这是因为通常材料的几何尺度远大于电子的平均自由程 (例如铜中电子的平均自由程约 34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级, 只有几个原子的厚度时(例如,铜原子的直径约为 0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。电子除携带电荷外, 还具有自旋特性, 自旋磁矩有平行或反平行于外磁场两种可能取向。早在 1936年,英国物理学家,诺贝尔奖获得者 N.F.Mott 指出, 在过渡金属中, 自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和

3、 ; 总电阻是两类自旋电流的并联电阻, 这就是所谓的两电流模型。在图 2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后, 两层铁磁膜的方向都与外磁场方向一致, 外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。电阻欧姆磁场强度 / 高斯图 3 某种 GMR 材料的磁阻特性无外磁场时顶层磁场方向顶层铁磁膜中间导电层底层铁磁膜无外磁场时底层磁场方向图 2 多层膜 GMR 结构图图 3是图 2结构的某种 GMR材料的磁阻特性。 由图可见, 随着外磁场增大, 电阻逐渐减小,其间有一段线性区域。 当外磁场已使两铁磁膜完全平

4、行耦合后,继续加大磁场, 电阻不再减小,进入磁饱和区域。 磁阻变化率 R/R 达百分之十几, 加反向磁场时磁阻特性是对称的。注意到图 2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。有两类与自旋相关的散射对巨磁电阻效应有贡献。其一, 界面上的散射。无外磁场时, 上下两层铁磁膜的磁场方向相反, 无论电子的初始自旋状态如何, 从一层铁磁膜进入另一层铁磁膜时都面临状态改变 (平行反平行, 或反平行平行),电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。其二, 铁磁膜内的散射

5、。 即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。 无外磁场时, 上下两层铁磁膜的磁场方向相反, 无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程, 两类自旋电流的并联电阻相似两个中等阻值的电阻的并联, 对应于高电阻状态。 有外磁场时, 上下两层铁磁膜的磁场方向一致, 自旋平行的电子散射几率小, 自旋反平行的电子散射几率大, 两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联, 对应于低电阻状态。多层膜 GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在制作模拟传感器方面得到广泛应用。 在数字记录与

6、读出领域, 为进一步提高灵敏度, 发展了自旋阀结构的 GMR。【实验装置】巨磁电阻实验仪;基本特性组件;电流测量组件;角位移测量组件;磁读写组件;【实验内容】一、 GMR模拟传感器的磁电转换特性测量在将 GMR构成传感器时,为了消除温度变化等环境因素对输出的影响,一般采用桥式结构。a 几何结构 b 电路连接GMR模拟传感器结构图对于电桥结构, 如果 4 个 GMR电阻对磁场的影响完全同步, 就不会有信号输出。 图 17-9中,将处在电桥对角位置的两个电阻 R3, R4 覆盖一层高导磁率的材料如坡莫合金,以屏蔽外磁场对它们的影响,而 R1, R2阻值随外磁场改变。设无外磁场时 4 个 GMR电阻

7、的阻值均为 R, R1 、 R2 在外磁场作用下电阻减小 R,简单分析表明,输出电压:OUTU =UIN(2R-R)(2)屏蔽层同时设计为磁通聚集器,它的高导磁率将磁力线聚集在R1、R2 电阻所在的空间,进一步提高了 R1, R2 的磁灵敏度。从几何结构还可见, 巨磁电阻被光刻成微米宽度迂回状的电阻条,以增大其电阻至k数量级,使其在较小工作电流下得到合适的电压输出。GMR模拟传感器的磁电转换特性模拟传感器磁电转换特性实验原理图将 GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。 实验仪的4V 电压源接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”,基本特性组件

8、“模拟信号输出”接至实验仪电压表。按表 1 数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小磁场”列中。由于恒流源本身不能提供负向电流,当电流减至 0 后,交换恒流输出接线的极性,使电流反向。再次增大电流 i ,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。电流至 -100mA 后,逐渐减小负向电流,电流到 0 时同样需要交换恒流输出的极性。从下到上记录数据于表一“增大磁场”列中。理论上讲,外磁场为零时, GMR传感器的输出应为零,但由于半导体工艺的限制, 4个桥臂电阻值不一定完全相同,导致外磁场为零时输出不一定为零,在有的传感器中可以观察到这一现

9、象。根据螺线管上表明的线圈密度,由公式( 1)计算出螺线管内的磁感应强度 B。以磁感应强度 B 作横坐标,电压表的读数为纵坐标作出磁电转换特性曲线。不同外磁场强度时输出电压的变化反映了 GMR传感器的磁电转换特性, 同一外磁场强度下输出电压的差值反映了材料的磁滞特性。表 1 GMR模拟传感器磁电转换特性的测量(电桥电压4V)磁感应强度 / 高斯输出电压 /mV励磁电流 /mA磁感应强度 / 高斯减小磁场增大磁场1002312339023123380230232702292306022322250202195.040167.2154.630129.8114.7209275.71056.743.2

10、540.415.3024.319.3511.236.9 1039.452.8 2073.488.1 30110.5125.9 40150.4164 50189.6200 60220224 70230231 80232232 90233233 100233234二、 GMR磁阻特性测量磁阻特性测量原理图为加深对巨磁电阻效应的理解, 我们对构成 GMR模拟传感器的磁阻进行测量。 将基本特性组件的功能切换按钮切换为“巨磁阻测量”,此时被磁屏蔽的两个电桥电阻 R3、R4 被短路,而 R1、 R2 并联。将电流表串连进电路中,测量不同磁场时回路中电流的大小,就可以计算磁阻。实验装置:巨磁阻实验仪,基本特

11、性组件。将 GMR模拟传感器置于螺线管磁场中,功能切换按钮切换为“巨磁阻测量”。 实验仪的4伏电压源串连电流表后,接至基本特性组件“巨磁电阻供电”,恒流源接至“螺线管电流输入”。按表 2 数据,调节励磁电流,逐渐减小磁场强度,记录相应的磁阻电流于表格“减小磁场”列中。由于恒源流本身不能提供负向电流,当电流减至 0 后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。电流至一 100mA后,逐渐减小负向电流, 电流到 0 时同样需要交换恒流输出接线的极性。从下到上记录数据于“增大磁场”列中。根据螺线管上表明的线圈密度,由公

12、式( 1)计算出螺线管内的磁感应强度 B。由欧姆定律 R=U/I 计算磁阻。以磁感应强度 B 作横坐标,磁阻为纵坐标做出磁阻特性曲线。应该注意, 由于模拟传感器的两个磁阻是位于磁通聚集器中, 与图的磁阻曲线斜率大了约 10 倍,磁通聚集器结构使磁阻灵敏度大大提高。3 相比,我们作出不同外磁场强度时磁阻的变化反映了材料的磁滞特性。GMR的磁阻特性,同一外磁场强度的差值反映了表 2GMR磁阻特性的测量(磁阻两端电压4V)磁阻/磁感应强度 / 高斯减小磁场增大磁场励磁电流 /mA磁感应强度 / 高斯磁阻电流 /mA磁阻/ 磁阻电流 /mA磁阻/1001.9121.910901.9111.910801

13、.9111.909701.9101.900601.9081.892501.8911.876401.8521.831301.8071.786201.7631.748101.7251.71351.7091.69601.6921.676 51.6781.699 101.7041.716 201.7381.752 301.7761.793 401.8181.838 501.8641.882 601.8961.905 701.9061.909 801.9091.910 901.9101.910 1001.9101.910三、GMR开关(数字)传感器的磁电转换特性曲线测量将 GMR模拟传感器与比较电路,晶

14、体管放大电路集成在一起,就构成感器,结构如图 14所示。GMR开关(数字) 传比较电路的功能是, 当电桥电压低于比较电压时, 输出低电平。 当电桥电压高于比较电压时, 输出高电平。 选 择适当的 GMR电桥并结合调节比较电压, 可调节开关传感器开关点对应的磁场强度。输出电压 /V输出GMR开关关开比较电路电桥磁场强度/ 高斯 20100102030图 14GMR 开关传感器结构图图 15GMR 开关传感器磁电转换特性图 15是某种 GMR开关传感器的磁电转换特性曲线。当磁场强度的绝对值从低增加到12高斯时,开关打开(输出高电平),当磁场强度的绝对值从高减小到 10高斯时,开关关闭(输出低电平)

15、。实验装置:巨磁阻实验仪,基本特性组件。将 GMR模拟传感器置于螺线管磁场中, 功能切换按钮切换为 “传感器测量”。实验仪的 4伏电压源接至基本特性组件“巨磁电阻供电”, “电路供电”接口接至基本特性组件对应的“电路供电”输入插孔,恒流源接至“螺线管电流输入”,基本特性组件“开关信号输出”接至实验仪电压表。从 50mA逐渐减小励磁电流,输出电压从高电平(开)转变为低电平(关)时记录相应的励磁电流于表 3“减小磁场” 列中。当电流减至 0后,交换恒流输出接线的极性, 使电流反向。再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,输出电压从低电平(关)转变为高电平 (开)时记录相应的负值励

16、磁电流于表 3“减小磁场” 列中。将电流调至 50mA。逐渐减小负向电流,输出电压从高电平(开)转变为低电平(关)时记录相应的负值励磁电流于表 3“增大磁场” 列中, 电流到 0时同样需要交换恒流输出接线的极性。输出电压从低电平(关)转变为高电平(开)时记录相应的正值励磁电流于表 3“增大磁场”列中。表 3 GMR开关传感器的磁电转换特性测量 高电平 V 低电平 V减小磁场 增大磁场开关动作 励磁电流 /mA 磁感应强度 / 高斯 开关动作 励磁电流 /mA 磁感应强度 / 高斯关 关开 开根据螺线管上标明的线圈密度,由公式( 1)计算出螺线管内的磁感应强度 B。以磁感应强度 B作横座标,电压

17、读数为纵座标作出开关传感器的磁电转换特性曲线。利用 GMR开关传感器的开关特性已制成各种接近开关,当磁性物体(可在非磁性物体上贴上磁条) 接近传感器时就会输出开关信号。 广泛应用在工业生产及汽车, 家电等日常生活用品中,控制精度高,恶劣环境(如高低温,振动等)下仍能正常工作。由于仪器故障原因,此步骤无法进行。四、用 GMR模拟传感器测量电流GMR模拟传感器在一定的范围内输出电压与磁场强度成线性关系,且灵敏度高,线性范围大,可以方便的将 GMR制成磁场计,测量磁场强度或其它与磁场相关的物理量。作为应用示例,我们用它来测量电流。由理论分析可知,通有电流 I 的无限长直导线,与导线距离为 r 的一点

18、的磁感应强度为:B = 0I /2 r =2 I 10-7/r ( 3)磁场强度与电流成正比,在 r 已知的条件下,测得 B,就可知 I 。在实际应用中,为了使 GMR模拟传感器工作在线性区,提高测量精度,还常常预先给传感器施加一固定已知磁场,称为磁偏置,其原理类似于电子电路中的直流偏置。模拟传感器测量电流实验原理图实验装置:巨磁阻实验仪,电流测量组件实验仪的 4伏电压源接至电流测量组件 “巨磁电阻供电” ,恒流源接至 “待测电流输入” ,电流测量组件“信号输出”接至实验仪电压表。将待测电流调节至 0。将偏置磁铁转到远离 GMR传感器,调节磁铁与传感器的距离,使输出约 25mV。将电流增大到

19、300mA,按表 4数据逐渐减小待测电流, 从左到右记录相应的输出电压于表格“减小电流”行中。由于恒流源本身不能提供负向电流,当电流减至 0后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时电流方向为负,记录相应的输出电压。逐渐减小负向待测电流, 从右到左记录相应的输出电压于表格 “增加电流” 行中。当电流减至 0后,交换恒流输出接线的极性,使电流反向。再次增大电流,此时电流方向为正,记录相应的输出电压。将待测电流调节至 0。将偏置磁铁转到接近 GMR传感器,调节磁铁与传感器的距离,使输出约 150mV。用低磁偏置时同样的实验方法,测量适当磁偏置时待测电流与输出电压的关系。表 4用 G

20、MR模拟传感器测量电流待测电流 /mA3002001000 100 200 300输出低磁偏置减小电流26.726.225.625.024.523.923.3电压/mV ( 约25mV) 增加电流适当磁偏置 减小电流( 约 130.1mV) 增加电流26.726.225.625.024.423.923.3132.7131.9131.1130.3129.5128.6127.7132.8131.9131.1130.1129.4128.6127.7以电流读数作横坐标,电压表的读数为纵坐标作图。分别作出 4条曲线。由测量数据及所作图形可以看出,适当磁偏置时线性较好,斜率(灵敏度)较高。由于待测电流产生

21、的磁场远小于偏置磁场, 磁滞对测量的影响也较小, 根据输出电压的大小就可确定待测电流的大小。用 GMR传感器测量电流不用将测量仪器接入电路,不会对电路工作产生干扰,既可测量直流,也可测量交流,具有广阔的应用前景。五、 GMR梯度传感器的特性及应用将 GMR电桥两对对角电阻分别置于集成电路两端, 4个电阻都不加磁屏蔽, 即构成梯度传感器,如图 17所示。输出 输出图 17 GMR 梯度传感器结构图这种传感器若置于均匀磁场中,由于4个桥臂电阻阻值变化相同,电桥输出为零。如果磁场存在a一定的梯度, 各 GMR电阻感受到的磁场不同,磁阻变化不一样,就会有信号输出。图18以检测齿轮的角b位移为例,说明其

22、应用原理。将永磁体放置于传感器上方,若齿轮是铁磁材c料,永磁体产生的空间磁场在相对于齿牙不同位置时,产生不同的梯度磁场。a位置时,输出为零。 b位置时, R 、 R 感受到的磁场强度大于R 、R,输d1234出正电压。 c位置时,输出回归零。 d位置时, R 、1R 感受到的磁场强度小于R 、 R ,输出负电压。于图 18 用 GMR 梯度传感器检测齿轮位移234是 , 在齿轮转动过程中, 每转过一个齿牙便产生一个完整的波形输出。这一原理已普遍应用于转速(速度)与位移监控, 在汽车及其它工业领域得到广泛应用。实验装置:巨磁阻实验仪、角位移测量组件。将实验仪 4V电压源接角位移测量组件“巨磁电阻

23、供电”,角位移测量组件“信号输出”接实验仪电压表。逆时针慢慢转动齿轮,当输出电压为零时记录起始角度,以后每转3度记录一次角度与电压表的读数。转动48度齿轮转过2齿,输出电压变化2个周期。表 4 齿轮角位移的测量起始角度 / 度03691215182124转动角度 / 度018.331.431.319.94.7-9.8-15.1-2.0输出电压 /mV2730333639424548起始角度 / 度1732.231.520.24.4-9.8-15.4-2.2以齿轮实际转过的度数为横坐标,电压表的读数为纵向坐标作图。六、磁记录与读出磁记录是当今数码产品记录与储存信息的最主要方式, 由于巨磁阻的出现

24、, 存储密度有了成百上千倍的提高。在当今的磁记录领域,为了提高记录密度,读写磁头是分离的。写磁头是绕线的磁芯,线圈中通过电流时产生磁场, 在磁性记录材料上记录信息。 巨磁阻读磁头利用磁记录材料上不同磁场时电阻的变化读出信息。 磁读写组件用磁卡做记录介质, 磁卡通过写磁头时可写入数据,通过读磁头时将写入的数据读出来。同学可自行设计一个二进制码,按二进制码写入数据,然后将读出的结果记录下来。实验装置:巨磁阻实验仪,磁读写组件,磁卡。实验仪的 4伏电压源接磁读写组件“巨磁电阻供电”, “电路供电”接口接至基本特性组件对应的“电路供电”输入插孔,磁读写组件“读出数据”接至实验仪电压表。将需要写入与读出

25、的二进制数据记入表 6第 2行。将磁卡插入, “功能选择”按键切换为“写”状态。缓慢移动磁卡,根据磁卡上的刻度区域切换“写 0”“写 1”;将“功能选择”按键切换为“读”状态,移动磁卡至读磁头处,根据刻度区域在电压表上读出电压,记录于表 6第 4行。表 6 二进制数字的写入与读出十进制数字 85二进制数字01010101磁卡区域号12345678读出电平3.1mV1.983V3.1mV1.983V3.1mV1.983V3.1mV1.983V此实验演示了磁记录与磁读出的原理与过程。【实验数据处理】1.GMR模拟传感器的磁电转换特性测量磁感应强度/ 高斯输出电压 /mV励磁电流 /mA磁感应强度 / 高斯减小磁场增大磁场10030.159289472312339027.143360532312338024.127431582302327021.111502632292306018.095573682232225015.07964474202195.04012.06371579167.2154.6309.047786842129.8114.7206.0318578959275.7103.01592894756.743.251.50796447440.415.30024.319.3 5-1.507964474

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1