1、专题复习学案D电磁感应学生版要点电磁感应定律的综合应用 电磁感应定律的综合应用主要表现在以下几方面:1电磁感应问题与电路问题的综合,解决这类电磁感应中的电路问题,一方面要考虑电磁学中的有关规律如右手定则、法拉第电磁感应定律等;另一方面还要考虑电路中的有关规律,如欧姆定律、串并联电路的性质等,有时可能还会用到力学的知识2电磁感应中切割磁感线的导体要运动,感应电流又要受到安培力的作用,因此,电磁感应问题又往往和力学问题联系在一起,解决电磁感应中的力学问题,一方面要考虑电磁学中的有关规律;另一方面还要考虑力学中的有关规律,要将电磁学和力学的知识综合起来应用考点一 电磁感应中的图像问题电磁感应中常涉及
2、 、 、 和 随时间t 变化的图像,即B-t 图像、-t 图像、E-t 图像和I-t 图像等。对于切割磁感线产生感应电动势和感应电流的情况还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图像,即E -x 图像和I -x 图像。这些图像问题大体上可分为两类:由给定的电磁感应过程选出或画出正确的图像,或由给定的有关图像分析电磁感应过程,求解相应的物理量。不管是何种类型,电磁感应中的图像问题常需利用 、 和 等规律分析解决。 例1(08上海 如图12-1-1所示,平行于y 轴的导体棒以速度v 向右匀速直线运动,经过半径为R 、磁感应强度为B 的圆形匀强磁场区域,导体棒中的感应电动势e 与导体
3、棒位置x 关系的图像是( ) 规律总结处理图象问题,可从以下六个方面入手分析:一要看坐标轴表示什么物理量;二 要看具体的图线,它反映了物理量的状态或变化;三要看斜率,斜率是纵坐标与横坐标的比值,往往有较丰富的物理意义;四要看图象在坐标轴上的截距,它反映的是一个物理量为零时另一物理量的状态;五要看面积,如果纵轴表示的物理量与横轴表示的物理量的乘积,与某个的物理量的定义相符合,则面积有意义,否则没有意义;六要看(多个图象)交点变式1如图所示,一个由导体做成的矩形线圈,以恒定速率v 运动,从无场区进入匀强磁场区,然后出来,若取逆时针方向为电流的正方向,那么图中所示的哪一个图像能正确地表示回路中电流对
4、时间的函数关系( )考点二、电磁感应与电路的综合电磁感应问题往往与电路问题联系在一起,解决与电路相联系的电磁感应问题的基本方法是:(1用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向(2画等效电路(3运用闭合电路欧姆定律,串、并联电路特点,电功率等公式联立求解2. 注意问题:(1画等效电路时,要注意:切割磁感线的导体或磁通量变化的回路将产生感应电动势,该导体或回路相当于电源,与其它导体组成闭合回路(2在利用闭合电路欧姆定律时,一定要注意产生感应电动势相当于电源的那部分电路是否具有电阻(内电阻 【例2】如图12-1-2所示,竖直向上的匀强磁场,磁感应强度B =0.5 T ,并且以tB =
5、0.1 T/s在变化,水平轨道电阻不计,且不计摩擦阻力,宽0.5 m的导轨上放一电阻R 0=0.1 的导体棒,并用水平线通过定滑轮吊着质量M =0.2 kg的重物,轨道左端连接的电阻R =0.4 ,图中的l =0.8 m ,求至少经过多长时间才能吊起重物.变式2如图所示,两个互连的金属圆环,粗金属环的电阻为细金属环电阻的二分之一磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )112A. E B.E C.E D.E233特别提醒 在分析电磁感应中的图像问题时,如果是在分析电流方向问题时一定要紧抓住图象的斜率,图象斜率的
6、正负代表了电流的方向;另外还要注意导体在磁场中切割磁感线时有效长度的变化与图象相结合的问题在近几年的高考中出现的频率较高,在分析这类问题时除了运用右手定则、楞次定律和法拉第电磁感应定律等规律外还要注意相关集合规律的运用。变式3(2006上海物理)如图12-1-10所示,平行金属导轨与水平面成角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R 1和R 2的阻值均相等,与导轨之间的动摩擦因数为,导体棒ab 沿导轨向上滑动,当上滑的速度为V 时,受到安培力的大小为F 。此时( A 电阻R 1消耗的热功率为Fv/3 B 电阻 R 1消耗
7、的热功率为Fv/6 C 整个装置因摩擦而消耗的热功率为mgvcos D 整个装置消耗的机械功率为(F mgcos)v 考点三、电磁感应中的动力学问题:感应电流在磁场中受到 的作用,因此电磁感应问题往往跟 学问题联系在一起。解决这类问题需要综合应用电磁感应规律(法拉第电磁感应定律)及力学中的有关规律(牛顿运动定律、动量守恒定律、动量定理、动能定理等),分析时要特别注意 、速度v 达 的特点。电磁感应中产生的感应电流在磁场中将受到安培力的作用,从而影响导体棒的受力情况和运动情况。这类问题的分析思路如下: 例3如图12-1-3所示,电阻不计的平行金属导轨MN 和OP 放置在水平面内.MO 间接有阻值
8、为R=3的电阻. 导轨相距d=lm,其间有竖直向下的匀强磁场,磁感强度B=0.5T.质量为m=0.1kg,电阻为r=l的导体棒CD 垂直于导轨放置,并接触良好,现用平行于 MN 的恒力F=1N向右拉动CD ,CD 受摩擦阻力f 恒为0.5N. 求(1CD运动的最大速度是多少? (2当CD达到最大速度后,电阻R 消耗的电功率是多少? (3当CD 的速度为最大速度的一半时,CD 的加速度是多少?规律总结分析综合问题时,可把问题分解成两部分电学部分与力学部分来处理电学部分思路:先将产生电动势的部分电路等效成电源,如果有多个,则应弄清它们间的(串、并联或是反接)关系再分析内、外电路结构,作出等效电路图
9、,应用欧姆定律理顺电学量间的关系力学部分思路:分析通电导体的受力情况及力的效果,并根据牛顿定律、动量、能量守恒等规律理顺力学量间的关系分析稳定状态或是某一瞬间的情况,往往要用力和运动的观点去处理注意稳定状态的特点是受力平衡或者系统加速度恒定,稳定状态部分(或全部)物理量不会进一步发生改变非稳态时的物理量,往往都处于动态变化之中,瞬时性是其最大特点而“电磁感应”及“磁场对电流的作用” 是联系电、力两部分的桥梁和纽带,因此,要紧抓这两点来建立起相应的等式关系变式4如图所示,矩形线框的质量m 0.016kg ,长L 0.5m ,宽d 0.1m ,电阻R 0.1.从离磁场区域高h 15m 处自由下落,
10、刚 入匀强磁场时, 由于磁场力作用,线框正好作匀速运动.(1求磁场的磁感应强度;(2 如果线框下边通过磁场所经历的时间为t 0.15s ,求磁场区域的高度h 2.变式5如图12-3-22所示,在与水平方向成=30角的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计。空间存在着匀强磁场,磁感应强度B =0.20T,方向垂直轨道平面向上。导体棒ab 、cd 垂直于轨道放置,且与金属轨道接触良好构成闭合回路,每根导体棒的质量m =2.010-2kg 、电阻r =5. 010-2,金属轨道宽度l =0.50m。现对导体棒ab 施加平行于轨道向上的拉力,使之沿轨道匀速向上运动。在导体棒ab
11、运动过程中,导体棒cd 始终能静止在轨道上。g 取10m/s2, 求:(1)导体棒cd 受到的安培力大小; (2)导体棒ab 运动的速度大小; (3)拉力对导体棒ab 做功的功率。考点四、电磁感应中的能量问题:电磁感应的过程实质上是 的转化过程,电磁感应过程中产生的感应电流在磁场中必定受到 力的作用,因此,要维持感应电流的存在,必须有“外力”克服 力做功。此过程中,其他形式的能量转化为 能。“外力”克服安培力做了多少功,就有多少其他形式的能转化为 能。当感应电流通过用电器时, 能又转化为其他形式的能量。安培力做功的过程是 的过程。安培力做了多少功就有多少电能转化为其他形式的能。解决这类问题的方
12、法是:1. 用法拉第电磁感应定律和紧接着要学到的楞次定律确定感应电动势的大小和方向。 2. 画出等效电路,求出回路中电阻消耗电功率的表达式。3. 分析导体机械能的变化,用能量守恒关系得到机械功率的改变所满足的方程。例4如图12-1-4所示,abcd 为静止于水平面上宽度为L 而长度很长的U 形金属滑轨,bc 边接有电阻R ,其它部分电阻不计。ef 为一可在滑轨平面上滑动、质量为m 的均匀金属棒。今金属棒以一水平细绳跨过定滑轮,连接一质量为M 的重物。一匀强磁场B 垂直滑轨面。重物从力运动导体所受的安培力F=BIL感应电流确定电源(E ,rEI =临界状态态v 与a 方向关系运动状态的分a 变化
13、情况 图12-3-22 静止开始下落,不考虑滑轮的质量,且金属棒在运动中均保持与bc 边平行。忽略所有摩擦力。则:(1)当金属棒作匀速运动时,其速率是多少?(忽略bc 边对金属棒的作用力)。(2)若重物从静止开始至匀速运动时下落的总高度为h ,求这一过程中电阻R 上产生的热量。解析:视重物M 与金属棒m 为一系统,使系统运动状态改变的力只有重物的重力与金属棒受到的安培力。由于系统在开始一段时间里处于加速运动状态,由此产生的安培力是变化的,安培力做功属于变力做功。系统的运动情况分析可用简图表示如下: 棒的速度v BLv棒中产生的感应电动势E E R/通过棒的感应电流I B IL棒所受安培力F M
14、 g F 安安-棒所受合力F F M m 合合+/(棒的加速度a 当a=0时,有m g F -=安0,解得v m gR B L =/22 由能量守恒定律有M gh M m v Q =+( /22 解得Q M g h M m M gR B L =-+( /2442【方法规律】从求焦耳热的过程可知,此题虽属变化的安培力做功问题,但我们不必追究变 力、变电流做功的具体细节,只需弄清能量的转化途径,用能量的转化与守恒定律就可求解。在分析电磁感应中的能量转换问题时常会遇到的一个问题是求回路中的焦耳热, 对于这个问题的分析常有三种思路:、若感应电流是恒定的,一般利用定义式Q=I2Rt 求解。、若感应电流是
15、变化的,由能的转化与守恒定律求焦耳热(不能取电流的平均值由Q=I2Rt 求解)。、既能用公式Q=I2Rt 求解,又能用能的转化与守恒定律求解的,则可优先用能的转化与守恒定律求解。 变式6如图所示,金属杆a 在离地h 高处从静止开始沿弧形轨道下滑,导轨平行的水平部分有竖直向上的匀强磁场B ,水平部分导轨上原来放有一金属杆b ,已知a 杆的质量为ma ,且与b 杆的质量比为m a : m b =3: 4,水平导轨足够长,不计摩擦,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少?(3)若已知a 、b 杆的电阻之比R a :Rb =3:4,其余电阻不计,整个过程中a
16、 、b 上产生的热量分别是多少?变式7如图所示,在一对平行光滑的导轨的上端连接一阻值为R 的固定电阻,两导轨所决定的平面与水平面成30角. 今将一质量为m 、长为L 的导体棒ab 垂直放于导轨上,并使其由静止开始下滑已知导体棒电阻为r ,整个装置处于垂直于导轨平面的匀强磁场中,磁感应强度为B 求导体棒下滑的最终速度及电阻R 发热的最终功率分别为多少?考点五、电磁感应中“滑轨”问题归类例析导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,电磁感应中“滑轨”问题,最后要探讨的问题
17、不外乎以下几种: 1、运动分析:稳定运动的性质(可能为静止、匀速运动、匀加速运动)、求出稳定的速度或加速度、求达到稳定的过程中发生的位移或相对位移等2、分析运动过程中产生的感应电流、讨论某两点间的电势差等 3、分析有关能量转化的问题:如产生的电热、机械功率等 4、求通过回路的电量解题的方法、思路通常是首先进行受力分析和运动分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,我分成单杆滑、双杆滑以及轨道滑三种情况举例分析。 一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例5如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里
18、的匀强磁场中,M 、P 间接有一阻值为R 的电阻一根与导轨接触良好、阻值为R 2的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。2、杆与电容器连接组成回路 例6光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。3、杆与电源连接组成回路例7如图所示,长平行导轨PQ 、MN 光滑,相距5. 0 l m B =0
19、.8T=0.8,导轨电阻不计导轨间通过开关S 将电动势E =1.5VP 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度 =7.5m/s沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明)二、“双杆”滑切割磁感线型1、双杆所在轨道宽度相同常用动量守恒求稳定速度例8两根足够长的固定的平行金属导轨位于同一水平面内,放着两根导体棒ab 和cd 磁场, 磁感应强度为B 设两导体棒均可沿导轨无摩擦地滑行棒cd 静止,棒ab 有指向棒cd 的初速度v 0不接触,求:(1)在
20、运动中产生的焦耳热最多是多少(2)当速度变为初速度的3/4时,cd 棒的加速度是多少?2、双杆所在轨道宽度不同常用动量定理找速度关系例9如图所示,abcd 和a /b /c /d /为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。ab 、a /b /间的宽度是cd 、c /d /间宽度的2倍。设导轨足够长,导体棒ef 的质量是棒gh 的质量的2倍。现给导体棒ef 一个初速度v 0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?3、磁场方向与导轨平面不垂直例10如图所示,ab 和cd 是固定在同一水平面内的足够长平行金属导轨,ae 和cf 是平行的足够长倾斜导轨,整个装置放在竖直向上的匀强磁场中。在水平导轨上有与导轨垂直的导体棒1,在倾斜导轨上有与导轨垂直且水平的导体棒2,两棒与导轨间接触良好,构成一个闭合回路。已知磁场的磁感应强度为B ,导轨间距为L ,倾斜导轨与水平面夹角为,导体棒1和2质量均为m ,电阻均为R 。不计导轨电阻和一切摩擦。现用一水平恒力F 作用在棒1上,从静止开始拉动棒1,同时由静止开始释放棒2,经过一段时间,两棒最终匀速运动。忽略感应电流之间的作用,试求:(1)水平拉力F 的大小;(2)棒1最终匀速运动的速度v 1的大小。a /
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1