1、t分布与t检验t分布从数理统计的理论上讲,并且上节的实例也已说明,在总体均数为,总体标准差为的正态总体中随机抽取n相等的许多样本,分别算出样本均数,这些样本均数呈正态分布。而当样本含量n不太小时,即使总体不呈正态分布,样本均数的分布也接近正态。在下式中,由于与(样本均数的标准差)都是常量,又X呈正态分布,所以u也呈正态分布。但实际上总体标准差往往是不知道的,上式分母中的要由S替代,成为,那么由于样本标准差有抽样波动,SX也有抽样波动,于是,在用S代替后上式等号右边的变量便不呈正态分布而呈t分布,其定义公式是(6.5)t分布也是左右对称,但在总体均数附近的面积较正态分布的少些,两端尾部的面积则比
2、正态分布的多些。t分布曲线随自由度而不同(如图6.1)。随着自由度的增大,t分布逐渐接近正态分布,当自由度为无限大时,t分布成为正态分布。图6.1t分布(实线)与正态分布(虚线)与正态分布相似,我们把t分布左右两端尾部面积之和=0.05(即每侧尾部面积为0.025)相应的t值称为5%界,符号为t0.05,,这里是自由度。把左右两端尾部面积之和为0.01相应的t值称为1%界,符号为t0.01,。t的5%界与1%界可查附表3,t值表。例如当自由度为10-1=9时,t0.05,9=2.262,t0.01,9=3.250。可信区间的估计一、参数估计的意义一组调查或实验数据,如果是计量资料可求得平均数,
3、标准差等统计指标,如果是计数资料则求百分率藉以概括说明这群观察数据的特征,故称特征值。由于样本特征值是通过统计求得的,所以又称为统计量以区别于总体特征值。总体特征值一般称为参数(总体量)。我们进行科研所要探索的是总体特征值即总体参数,而我们得到的却是样本统计量,用样本统计量估计或推论总体参数的过程叫参数估计。本章第一节例6.1通过检查110个健康成人的尿紫质算得阳性率为10%,这是样本率,可用它来估计总体率,说明健康成人的尿紫质阳性率水平,这样的估计叫“点估计”。但由于存在抽样误差,不同样本(如再检查110人)可能得到不同的估计值。因此我们常用“区间估计”总体率(或总体均数)大概在那一个范围内
4、,这个范围就叫可信区间。区间小的一端叫下限,大的一端叫上限。常用的有95%可信区间与99%可信区间。根据同一资料所作95%可信区间比99%可信区间窄些(上、下限较靠近),但估计错误的概率后者为1%,前者为5%,进行总体参数的区间估计时可根据研究目的与标准误的大小选用95%、或99%。二、总体均数的估计为了说明常用的总体均数之区间估计法,我们不妨回顾一下上节所叙的t分布。由求t的基本公式我们看到X与的距离等于t(SX),又根据X集中分布在周围的特点,若取t的5%界即t0.05,(或1%界)乘以SX作为X与的距离范围,就可用式(6.6)或式(6.7)求出区间来估计总体均数所在范围,估错的概率仅有5
5、%或1%,因此称95%或99%可信区间。下面用实例说明其求法。95%可信区间X-t0.05,SXX+T0.05,SX(6.6) 99%可信区间X-t0.05,SXX+T0.01,SX(6.7) 例6.2上面抽样实验中第1号样本的均数为488.6,标准差为61.65,例数10,自由度=10-1=9,试求95%与99%可信区间。1求标准误95%可信区间488.6-2.262(19.50)488.6+2.262(19.50),即有95%的把握估计是在444.49532.71区间内99%可信区间488.6-3.250(19.50)488.6+3.250(19.50),可有99%的把握估计是在425.2
6、2551.98区间内这里两个可信区间都包含=500在内,所以这次估计是估计对了。抽样实验共抽了100个样本,除1号样本外其余99个样本均数也对作了区间估计,这些95%可信区间列在表6.4中。我们看到,只有5个95%可信区间(右上角标有星号)不包含总体均数=500在内,它们是:样本号 X 95%可信区间 6 546.7 515.78577.62 7 524.5 500.45548.55 28 476.1 454.91497.29 72 465.3 447.02483.58 75 526.6 503.10550.10 平时我们并不重复抽取许多样本来一次次估计总体均数而仅是一次,至于算出的均数会类似
7、一百个样本均数中的那一个就很难说了。如果不遇到类似上列那些均数过大或过小的样本,求出可信区间后总体均数真是在该区间内,那么便是一次成功的估计:但是极少数情况下我们也会遇到极端的样本,以至总体均数并不在我们提出的区间内。不过,我们具体所作的这次估计到底属于前种情况还是后一种,这是无法知道的,因为我们不知道是多少(若已知便不必估计它了)。然而象后种情况那样作出错估的概率终究很小,只5%或1%,所以用这样的方法估计总体均数还是可行的。三、总体率的估计上面已经提到,计数资料可以计算相对数(率)。我们若由样本统计量P估计总体参数,同样要考虑率的抽样误差,据数理统计研究结果,样本率的分布也近似正态分布,尤
8、其当比较靠近50%且样本较大时。于是对样本,百分率的可信区间可利用正态分布规律估计,公式是:95%可信区间P-1.96Sp 99%可信区间P-2.58Sp (按正态分布,双侧尾部面积=0.05时的u值为1.96,=0.01时的u值为2.58,故用这两式求可信区间时不必查表找临界u值,记住这两数即可。)例6.3某医院收治200例急性菌痢患者,其中粪便细菌培养阳性者共80例,试估计菌痢细菌培养的总体阳性率95%与99%可信区间。1.求阳性率P8020010040(或0.40)2.3求可信区间95%可信区间40%-1.96(3.46%)40%+1.96(3.46%),即估计在33.22%46.78%
9、之间99%可信区间40%-2.58(3.46%))。(2)定显著性水准,并查出临界t值。是:若检验假设为真但被错误地拒绝的概率。现令=0.05,本例自由度=n-1=25-1=24、查附表3得t0.05,24=2.064。若从观察资料中求出的t值小于此数,我们就接受H0;若等于或大于此值则在=0.05水准处拒绝H0而接受H1。(3)求样本均数X、标准差S及标准误S并进而算出检验统计量t。现已知X=74.2次/分,S=6.5次/分,只要求出S及t值即可。(4)下结论:因tt0.05,24=2.064,所以检验假设H0得以接受,从而认为就本资料看,尚不能得出山区健康成年人的脉搏数不同于一般人而具有显
10、著差别的结论。二、成对资料样本均数的比较上面介绍了已知总体均数时的显著性检验方法,但有时我们并不知道总体均数,且医学数据资料中更为常见的是成对资料,若一批某病病人治疗前有某项测定记录,治疗后再次测定以观察疗效,这样,观察n例就有n对数据,这即是成对资料(也可对动物做成病理模型进行治疗实验以收集类似的成对资料);如果有两种处理要比较,将每一份标本分成两份各接受一种处理,这样观察到的一批数据也是成对资料,医学科研中有时无法对同一批对象进行前后或对应观察,而只得将病人(或实验动物)配成对子,尽量使同对中的两者在性别、年龄或其它可能会影响处理效果的各种条件方面极为相似,然后分别给以一种不同的处理后观察
11、反应,这样获得的许多对不可拆散的数据同样是成对资料。由于成对资料可控制个体差异使之较小,故检验效率是较高的。关于成对资料,每对数据始终相联这是它的特点,我们可以先初步观察每对数据的差别情况,进一步算出平均相差作为样本均数,再与假设的总体均数比较看相差是否显著,下面举实例说明检验过程。表 7.1豚鼠注入上腺素前后每分钟灌流滴数豚鼠号 每分钟灌流滴数 用药前 用药后 增加数d 1 30 46 16 2 38 50 12 3 48 52 4 4 48 52 4 5 60 58 -2 6 46 64 18 7 26 56 30 8 58 54 -4 9 46 54 8 10 48 58 10 11 4
12、4 36 -8 12 46 54 8 总 计 96 例7.2为了验证肾上腺素有无降低呼吸道阻力的作用,以豚鼠12只,进行支气管灌流实验,在注入定量肾上腺素前后,测定每分钟灌流滴数,结果见表7.1,问用药后灌流速度有无显著增加?(1)假设用药前后灌流滴数相同,则相差的总体均数为0;即H0:=0;H1:0。(2)令显著性水准=0.05,由本例=12-1=11查得临界值t0.05,11=2.201。(3)求样本统计量平均相差数d、差数的标准差Sd、标准误Sd及检验统计量t值。(4)下结论。今tt0.05,11,p 0(2)令=0.05,得t0.05,7=1.895(单侧)(3)用差数求统计量/P(4)结论t=2.264t0.05,7=1.895,Pt0.05,9,P=5.719t0.01,16=2.921,P0.001,在=0.01水准处拒绝H0,接受H1,两年龄组的人免疫球蛋白IgG的均数相差显著,7-8岁组的高于小几组。关于检验水准定在0.05还是0.01或其它处,要看检验者事先对结论的可靠性要求之高低而定。本例定=0.01,要求是较高的,最后查出P值小于0.001就更说明X1-X2=-40.4随机来自1-2=0的假设总体的可能性是很小的。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1