ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:22.85KB ,
资源ID:7966014      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7966014.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(进制的转换标准教程.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

进制的转换标准教程.docx

1、进制的转换标准教程进制的转换标准教程一、 进制的概念在计算机语言中常用的进制有二进制、八进制、十进制和十六进制,十进制是最主要的表达形式。对于进制,有两个基本的概念:基数和运算规则。基数:基数是指一种进制中组成的基本数字,也就是不能再进行拆分的数字。二进制是0和1; 八进制是0到7;十进制是0到9;十六进制是0到9加上A到F(大小写均可)。也可以这样简单记忆,假设是n进制的话,基数就是0,n-1的数字,基数的个数和进制值相同,二进制有两个基数,十进制有十个基数,依次类推。运算规则:运算规则就是进位或错位规则。例如对于二进制来说,该规则是“满二进一,借一当二”;对于十进制来说,该规则是“满十进一

2、,借一当十”。其他进制也是这样。二、重要概念及对照表格 数码:表示数的符号; 基 :数码的个数; 权 :每一位所具有的值。三、 二进制转化成其他进制1. 二进制(Binary)八进制(Octal)例子1:将二进制数(10010)2转化成八进制数。(10010)2=(010 010)2=(2 2)8=(22)8例子2:将二进制数(0.1010)2转化为八进制数。(0.10101)2=(0. 101 010)2=(0. 5 2)8=(0.52)8诀窍:因为每三位二进制数对应一位八进制数,所以,以小数点为界,整数位则将二进制数从右向左每3位一隔开,不足3位的在左边用0填补即可;小数位则将二进制数从左

3、向右每3位一隔开,不足3位的在右边用0填补即可。2. 二进制(Binary)十进制(Decimal)例子1:将二进制数(10010)2转化成十进制数。(10010)2=(1x24+0x23+0x22+1x21+0x20)10=(16+0+0+2+0)10=(18) 10例子2:将二进制数(0.10101)2转化为十进制数。(0.10101)2=(0+1x2-1+0x2-2+1x2-3+0x2-4+1x2-5)10=(0+0.5+0.25+0.125+0.0625+0.03125)10=(0.96875)10诀窍:以小数点为界,整数位从最后一 位(从右向左)开始算,依次列为第0、1、2、3n,然

4、后将第n位的数(0或1)乘以2的n-1次方,然后相加即可得到整数位的十进制数;小数位则 从左向右开始算,依次列为第1、2、3.n,然后将第n位的数(0或1)乘以2的-n次方,然后相加即可得到小数位的十进制数(按权相加法)。3. 二进制(Binary)十六进制(Hex)例子1:将二进制数(10010)2转化成十六进制数。(10010)2=(0001 0010)2=(1 2)16=(12) 16例子2:将二进制数(0.1010)2转化为十六进制数。(0.10101)2=(0. 1010 1000)2=(0. A 8)16=(0.A8)16诀窍:因为每四位二进制数对应一位十六进制数,所以,以小数点为

5、界,整数位则将二进制数从右向左每4位一隔开,不足4位的在左边用0填补即可;小数位则将二进制数从左向右每4位一隔开,不足4位的在右边用0填补即可。(10010)2=(22)8=(18) 10=(12)16(0.10101)2=(0.52)8=(0.96875)10=(0.A8)16四、 八进制转化成其他进制1. 八进制(Octal)二进制(Binary)例子1:将八进制数(751)8转换成二进制数。(751)8=(7 5 1)8=(111 101 001)2=(111101001)2例子2:将八进制数(0.16)8转换成二进制数。(0.16)8=(0. 1 6)8=(0. 001 110)2=(

6、0.00111)2诀窍:八进制转换成二进制与二进制转换成八进制相反。2. 八进制(Octal)十进制(Decimal)例子1:将八进制数(751)8转换成十进制数。(751)8=(7x82+5x81+1x80)10=(448+40+1)10=(489)10例子2:将八进制数(0.16)8转换成十进制数。(0.16)8=(0+1x8-1+6x8-2)10=(0+0.125+0.09375)10=(0.21875)10诀窍:方法同二进制转换成十进制。以 小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3n,然后将第n位的数(0-7)乘以8的n-1次方,然后相加即可得到 整数位

7、的十进制数;小数位则从左向右开始算,依次列为第1、2、3.n,然后将第n位的数(0-7)乘以8的-n次方,然后相加即可得到小数位的十 进制数(按权相加法)。3. 八进制(Octal)十六进制(Hex)例子1:将八进制数(751)8转换成十六进制数。(751)8=(111101001)2=(0001 1110 1001)2=(1 E 9)16=(1E9)16例子2:将八进制数(0.16)8转换成十六进制数。(0.16)8=(0.00111)2=(0. 0011 1000)2=(0.38)16诀窍:八进制直接转换成十六进制比较费力,因此,最好先将八进制转换成二进制,然后再转换成十六进制。(751)

8、8=(111101001)2=(489)10=(1E9)16(0.16)8=(0.00111)2=(0.21875)10=(0.38)16五、 十进制转化成其他进制1. 十进制(Decimal)二进制(Binary)例子1:将十进制数(93)10转换成二进制数。932=46.1462=23.0232=11.1112=5152=2.122=10(93)10=(1011101)2例子2:将十进制数(0.3125)10转换成二进制数。0.3125x2 = 0 . 6250.625x2 = 1 .250.25x2 = 0 .50.5x2 = 1 .0(0.3125)10=(0.0101)2诀窍:以小数

9、点为界,整数部分除以2,然后取每次得到的商和余数,用商继续和2相除,直到商小于2。然后把第一次得到的余数作为二进制的个位,第二次得到的余数作为二进制的十位,依次类推,最后一次得到的小于2的商作为二进制的最高位,这样由商+余数组成的数字就是转换后二进制的值(整数部分用除2取余法);小数部分则先乘2,然后获得运算结果的整数部分,将结果中的小数部分再次乘2,直到小数部分为零。然后把第一次得到的整数部分作为二进制小数的最高位,后续的整数部分依次作为低位,这样由各整数部分组成的数字就是转化后二进制小数的值(小数部分用乘2取整法)。需要说明的是,有些十进制小数无法准确的用二进制进行表达,所以转换时符合一定

10、的精度即可,这也是为什么计算机的浮点数运算不准确的原因。2. 十进制(Decimal)八进制(Octal)例子1:将十进制数(93)10转换成八进制数。938=11.5118=13(93)10=(135)8例子2: 将十进制数(0.3125)10转换成八进制数。0.3125x8 = 2 .50.5x8 = 4 .0(0.3125)10=(0.24)8诀窍:方法同十进制转化成二进制。以小数点为界,整数部分除以8,然后取每次得到的商和余数,用商继续和8相除,直到商小于8。然后把第一次得到的余数作为八进制的个位,第二次得到的余数作为八进制的十位,依次类推,最后一次得到的小于8的商作为八进制的最高位,

11、这样由商+余数组成的数字就是转换后八进制的值(整数部分用除8取余法); 小数部分则先乘8,然后获得运算结果的整数部分,将结果中的小数部分再次乘8,直到小数部分为零。然后把第一次得到的整数部分作为八进制小数的最高位,后续的整数部分依次作为低位,这样由各整数部分组成的数字就是转化后八进制小数的值(小数部分用乘8取整法)。3. 十进制(Decimal)十六进制(Hex)例子1:将十进制数(93)10转换成十六进制数。9316=5.13(D)(93)10=(5D)16例子2: 将十进制数(0.3125)10转换成十六进制数。0.3125x16 = 5 .0(0.3125)10=(0.5)16诀窍:方法

12、同十进制转化成二进制。以小数点为界,整数部分除以16,然后取每次得到的商和余数,用商继续和16相除,直到商小于16。然后把第一次得到的余数作为十六进制的个位,第二次得到的余数作为十六进制的十位,依次类推,最后一次得到的小于16的商作为十六进制的最高位,这样由商+余数组成的数字就是转换后十六进制的值(整数部分用除16取余法); 小数部分则先乘16,然后获得运算结果的整数部分,将结果中的小数部分再次乘16,直到小数部分为零。然后把第一次得到的整数部分作为十六进制小数的最高位,后续的整数部分依次作为低位,这样由各整数部分组成的数字就是转化后十六进制小数的值(小数部分用乘16取整法)。(93)10=(

13、1011101)2=(135)8=(5D)16(0.3125)10=(0.0101)2=(0.24)8=(0.5)16六、 十六进制转换成其他进制1. 十六进制(Hex)二进制(Binary)例子1:将十六进制数(A7)16转换成二进制数。(A7)16=(A 7)16=(1010 0111)2=(10100111)2例子2:将十六进制数(0.D4)16转换成二进制数。(0.D4)16=(0. D 4)16=(0. 1101 0100)2=(0.110101)2诀窍:十六进制转换成二进制与二进制转换成十六进制相反。2. 十六进制(Hex)八进制(Octal)例子1:将十六进制数(A7)16转换成

14、八进制数。(A7)16=(10100111)2=(010 100 111)8=(247)8例子2:将十六进制数(0.D4)16转换成八进制数。(0.D4)16=(0.110101)2=(0. 110 101)8=(0.65)8诀窍:十六进制直接转换成八进制比较费力,因此,最好先将十六进制转换成二进制,然后再转换成八进制。3. 十六进制(Hex)十进制(Decimal)例子1:将十六进制数(A7)16转换成十进制数。(A7)16=(10x161+7x160)10=(160+7)10=(167)10例子2:将十六进制数(0.D4)16转换成十进制数。(0.D4)16=(0+13x16-1+4x16

15、-2)10=(0+0.8125+0.015625)10=(0.828125)10诀窍:方法同二进制转换成十进制。以 小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3n,然后将第n位的数(0-9,A-F)乘以16的n-1次方,然后相 加即可得到整数位的十进制数;小数位则从左向右开始算,依次列为第1、2、3.n,然后将第n位的数(0-9,A-F)乘以16的-n次方,然后相 加即可得到小数位的十进制数(按权相加法)。(A7)16=(10100111)2=(247)8=(167)10(0.D4)16=(0.110101)2=(0.65)8=(0.828125)10七、 总结1.

16、 其他进制转十进制:将二进制数、八进制数、十六进制数的各位数字分别乘以各自基数的(N-1)次方,其相加之和便是相应的十进制数,这是按权相加法。2. 十进制转其他进制:整数部分用除基取余法,小数部分用乘基取整法,然后将整数与小数部分拼接成一个数作为转换的最后结果。3. 二进制转八进制:从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足。4. 八进制转二进制:与二进制转八进制相反。5. 二进制转十六进制:从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,不足四位的用0补足。6. 十六进制转二进制:与二进制转十六进制相反。7. 八进制转十六进制:通常将八进制转换成二进制,然后通过二进制再转换成十六进制。8. 十六进制转八进制:通常将十六进制转换成二进制,然后通过二进制再转换成八进制

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1