ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:160.97KB ,
资源ID:7948353      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7948353.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(可行性方案.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

可行性方案.docx

1、可行性方案建筑节能示范工程可行性方案研究项目名称:长大彩虹都高层办公及商住小区中央空调地热能利用技术与产品开发申报单位:湖南长大建设集团股份有限公司 申报时间: 2011年10月 目录一、 工程概况 3二、 示范目标及主要内容 3三、工程技术示范方案 8四、经济技术分析 10五、 进度计划与安排 10六、 效益分析 10七、 技术支持 11八、 风险分析 11九、 工程立项 121、工程概况本项目为长大彩虹都中央空调地源热泵系统方案,该项目为商住两用,总共18万m2,示范部分办公部分建筑面积为25000m2,住宅部分建筑面积122000m2,建筑面积为14.5万m2。二、示范目标及主要内本设计

2、方案为地源热泵中央空调项目方案,包括地源热泵工程的地下换热器部分、冷热源机房和生活热水部分内容。三、工程技术示范方案1、主机负荷根据提供资料,办公部分建筑面积为25000m2,住宅部分建筑面积122000m2。根据长沙地区气象资料,对该建筑采用负荷估算发对该项目负荷分析。办公部分取冷负荷125W/m2,热负荷65W/m2;住宅部分取冷负荷55W/m2,热负荷40W/m2;对该建筑负荷用冷负荷系数发进行分析,分析如下:办公区冷负荷变化曲线:住宅区冷负荷变化曲线:总冷负荷变化曲线:办公室热负荷变化曲线:住宅热负荷变化曲线:总热负荷变化曲线:由以上分析可知,办公类建筑和住宅类建筑的冷热负荷起到很大的

3、互补作用,集中冷热源能使系统的总负荷大大减少,减小系统的装机容量。因此,系统总冷负荷为2429kW,最大冷负荷出现在下午16:00,此时,办公类建筑处于负荷高峰时段,而住宅类建筑约只有总负荷的40。系统最大热负荷为1305 kW,最大热负荷出现在早上8:00,此时,办公类建筑为最大负荷,而住宅类建筑约为总负荷的33。2、空调形式常见的地源热泵系统通过闭环式垂直埋管地热换热器向土壤释放建筑物的冷负荷或从土壤中吸收热负荷,通过热泵实现对建筑物供冷供热。在地源热泵空调系统全年运行过程中,冬季通过热泵把从地下吸收的热量升高温度后对建筑供热,同时地下埋管周围的温度降低;夏季通过热泵把建筑物中的热量传输给

4、大地,对建筑物降温,同时地下埋管周围的温度升高。显然,这种温度的升高或降低,对当年采暖(或空调)季的地埋管换热器的传热性能有一定影响。如果在一年中冬季从地埋管换热器中抽取的热量与夏季向地埋管换热器输入的热量平衡,则地埋管换热器在数年的长时间运行后,地下的年平均温度没有变化,对地埋管换热器的性能没有影响。但是,在很多情况下,地埋管换热器全年的冷热负荷是不平衡的。例如在南方建筑物冬季的供暖负荷和供暖时间远小于夏季的空调负荷和空调时间;而在北方情况则相反。即使建筑物的冷热负荷及热泵冬夏季运行时间相等,注入地下的热量也要大于从地下抽出的热量。因为前者等于建筑冷负荷加上热泵轴功率,而后者等于建筑热负荷减

5、去热泵轴功率。在这种情况下,地埋管换热器的吸热和放热不平衡,多余的热量(或冷量)就会在地下积累,引起地下年平均温度的变化,进而影响地埋管换热器的出力。本项目冷负荷热负荷悬殊较大,热负荷只有冷负荷的一半。长期运行势必会破环地下土壤的温度平衡。另外,在地源热泵系统中,由于钻井费用较高,地下换热器的费用是一个不容忽视的问题。如何以最少的投资费用获得最合理的空调系统,最合理确定地下换热器的数量和利用地下换热器是地源热泵设计的重点。在本系统中,热负荷不到冷负荷的50,靠昂贵的地下换热器来满足全部的冷负荷是不经济也是不合理的。为了最大限度的提高系统的经济性和合理性,本系统的地下换热器按照满足热负荷设计,冷

6、负荷不足部分由水冷螺杆式冷水机组与冷却塔提供。3、机组选择在本项目中,采用地源热泵加水冷螺杆的方案,地源热泵满足系统最大热负荷,冷负荷的不足部分有水冷螺杆机组满足。空调系统为建筑夏季提供7/12的冷冻水,冬季提供45/40的空调热水,全年提供45的生活热水。机组选型如下:1、 DRSW-400-2,一台,做为夏季制冷冷源的一部分和冬季供热的热源,制冷量1380kW,制热量为1578.6kW。2、 DRSW-150-1-QH,一台,做为夏季制冷冷源的一部分和冬季供热的热源的一部分,制冷量533.6kW,制热量为607.4kW。3、 RSW-170-1,一台,夏季制冷冷源的一部分,制冷量599kW

7、。机组总制冷量为2512kW,总制热量1578.6 制热水负荷607.4kW,满足该项目制冷、制热及卫生热水要求。机组参数如下:DRSW-400-2DRSW-150-1QHSRW-170-1R22额定制冷量kW1380.0 533.6 599104kcal/h118.7 45.9 51.5 额定制热量kW1578.6 607.4 -104kcal/h135.7 52.2 -电源型式三相五线 380V 50Hz控制方式PLC可编程控制器中文触摸屏智能控制压缩机型式进口半封闭螺杆压缩机输入制冷kW241.6 91.6 116.0 功率制热kW311.5 118.1 -压缩机数量211容量控制有段或

8、连续容调冷凝器型式卧式壳管式换热器水压降kPa10010042水流量制冷m3/h278.9 107.5 123.0 制热m3/h271.5 104.5 -进出口管径DN150125150蒸发器型式卧式壳管式换热器水压降kPa10010052水流量制冷m3/h237.4 91.8 103.0 制热m3/h217.9 84.2 -进出口管径DN150125150制冷剂种类R22充注量kg126105161机组噪音dB(A)717074外形尺寸长mm315030003750宽mm130013001350高mm207419972340机组重量整机重量kg310027504350运行重量kg340030

9、504650注:(1)制冷标准工况:蒸发器进水温度12,蒸发器出水温度7;地源热泵冷凝器进出水温度25/30;水冷螺杆进出水温度30/35(2)制热标准工况:蒸发器进水温度15,蒸发器出水温度约10;冷凝器进水温度40,冷凝器出水温度45;4、吸热量、释热量计算本项目又办公和住宅两部分组成,办公部分最大冷负荷为1901kW,最大热负荷为988kW,根据机组的输入功率计算办公部分夏季最大排热量和冬季最大的吸热量分别为2234kW和794kW;住宅部分最大冷负荷为1551kW,最大热负荷为771kW,根据机组的输入功率计算住宅部分夏季最大排热量和冬季最大的吸热量分别为1551kW和771kW。综合

10、计算,由于两种功能建筑的负荷曲线变化不一致,存在较大的互补性,改项目设备最大的释热量为2246.8kW,最大吸热量为1756kW(包括卫生热水489kW)。根据计算,各部分吸热量和排热量如下表所示:项目排热(冬季)(kWh)吸热(冬季)(kWh)办公990790332635住宅995109438207热水1022121(全年)合计19858991792964吸热量/排热量1792964/19858991:1.08在本项目中,地源热泵机组的总吸热量比总排热量为1:1.08,差值小于10,因此负荷设计要求,不会对地下热平衡造成影响。5、地下换热器数量计算(1)建筑物冷热负荷及冬夏季地下换热量计算

11、建筑物冷热负荷计算与常规空调系统冷热负荷计算方法相同,可参考有关空调系统设计手册,在此不再赘述。 冬夏季地下换热量分别是指夏季向土壤排放的热量和冬季从土壤吸收的热量。可以由下述公式2计算: kW (1) kW (2)其中夏季向土壤排放的热量,kW夏季设计总冷负荷,kW冬季从土壤吸收的热量,kW冬季设计总热负荷,kW设计工况下水源热泵机组的制冷系数设计工况下水源热泵机组的供热系数在本计算中,机组的、是根据机组设计工况下的实际进出水温度对机组的制冷/制热量和输入功率修正后计算出的机组在实际运行中的COP值。(2)换热器形式 在现场勘测结果的基础上,考虑现场可用地表面积、当地土壤类型以及钻孔费用,确

12、定热交换器采用垂直竖井布置或水平布置方式。尽管水平布置通常是浅层埋管,可采用人工挖掘,初投资一般会便宜些,但它的换热性能比竖埋管小很多,并且在该项目中受可利用土地面积的限制,所以采用垂直埋管布置方式。根据埋管方式不同,垂直埋管大致有3种形式:(1)U型管(2)套管型(3)单管型。套管型的内、外管中流体热交换时存在热损失。单管型的使用范围受水文地质条件的限制。考虑到项目的成本、施工难以程度、本项目的地质条件特点,本项目采用竖直双U型埋管的地下耦合换热形式。埋管参数如下:孔径110mm,孔深45m,换热管为25mm。埋孔示意图如右所示。(3)确定竖直埋孔总井深地下热交换器长度的确定除了已确定的系统

13、布置和管材外,还需要有当地的土壤技术资料,如地下温度、传热系数等。根据上述地质材料,利用井深“换热能力”来计算井深。换热能力即单位垂直埋管深度或单位井深的换热量,本项目采用双U型埋管,设计时根据该地质条件下换热器的换热能力选取单位井深的换热量(单位井深排热量为72W/m,吸热量为55W/m),具体计算公式如下: (3)其中竖井埋管总长,m系统最大排热/吸热量,kW是每m井深排热/吸热量,W/m水平管路系数,本项目取1.14(4)确定竖直埋孔总井深根据上述计算方法计算,按最大排热量需要地下换热器孔数627个,按照最大吸热量需要地下换热器孔数623个。综合考虑,满足最大的排热量和吸热量,本系统共需

14、地下换热器孔数630个。地下换热器布置时采用分区布置,各区根据负荷间歇工作。在本项目中,采用地源热泵与水冷螺杆式冷水机组相结合的组合式能源,不仅有利于地下的热平衡,而且使系统的造价大大降低、运行费用达到最优。根据计算,本项目共需地下换热器孔数630个,地下排热量比吸热量为1:1.08。四、 经济技术分析项目总共投资1760万元,其中空调设备850万元,地下埋管部分650万元,其他材料、人工、税金及工程管理费260万元。五、 进度计划与安排工作进度主要工作内容2008.102009.01桩基、空调地下管预埋2009.012009.12主体施工、空调主体管道预埋、预设2010.012010.04空

15、调设备安装调试暨空调末端安装及调试2010.05空调验收、交付使用六、 效益分析6.1夏季制冷折合每平方米运行费用:7.33元/平方米6.2冬季供暖运行费用为(包括冬季生活热水、供热负荷运行费):折合每平方米运行费用:5.1元/平方米6.3过渡季节生活热水运行费用计算:过渡季节生活热水全年运行费用折合每平方米每年2.3元/平方米年6.4运行费用说明折合全年空调运行单价为:l2.43元/平方米年每户按154平方米/户,则全年每户交生活热水运行费用677.6元/户。传统形式空调25元/平方米年,生活热水1500元/户,全年运行费用节省尽一半。由于地源热泵较高的能效比和节能水泵的运用后,所以保持较低

16、的运行费用;由于各建筑功能不同,间歇运行,相互之间具有互补作用,实际总运行费用可能有所变化。但是,地源热泵和节能水泵应用后,其环保节能是显而易见的。七、 技术支持台佳实业是集中央空调系统设备研发、制造、销售及服务为一体的大型企业集团。自进入中国市场以来,我们以高质量的产品、卓越的技术以及完整的解决方案在行业中倍受瞩目。现旗下拥有近40个分支机构,建立了完善的销售网络和售后服务体系。台佳产品研发制造基地座落在江苏昆山国家级高新技术开发区,工厂拥有多条零部件生产线和整机装配流水线以及达到国际先进水平的国家级实验室,并于2002年通过了ISO9001:2000版质量管理体系认证。八、 风险分析地源热泵系统主要风险为冬夏吸热排热量不均衡,地埋管投资大,占地多。不项目采用地源热泵与水冷螺杆式冷水机组相结合的组合式能源,不仅有利于地下的热平衡,而且使系统的造价大大降低、运行费用达到最优。九、 工程立项批件、土地使用许可证、规划许可证和开发企业资质证明材料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1