ImageVerifierCode 换一换
格式:DOCX , 页数:21 ,大小:71.84KB ,
资源ID:7867850      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7867850.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(年产326万吨聚氯乙烯聚合工段的设计.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

年产326万吨聚氯乙烯聚合工段的设计.docx

1、年产326万吨聚氯乙烯聚合工段的设计 毕业设计 题 目: 年产3.26万吨聚氯乙烯聚合工段 的设计院 系: 化学与化工学院 专 业: 化学工程与工艺 班 级: 07化工本2 学生姓名: 闫素娜 指导教师: 张合昌 论文提交日期: 2011年 月 日论文答辩日期: 2011年 月 日内容摘要 本文讲述了我国聚氯乙烯工业生产技术的发展进程和目前状况,包括原料路线、工艺设备、聚合方法等。本设计采用悬浮法生产聚氯乙烯,介绍了采用悬浮法生产PVC树脂工聚合机理,工艺过程中需要注意的问题,包括质量影响因素,工艺条件及合成工艺中的各种助剂选择,对聚合工艺过程进行详细的叙述。并且从物料衡算、热量衡算和设备计算

2、和选型三个方面进行准确的工艺计算,对三废的处理回收等进行了叙述,画出了整个工艺的流程图。关键词 :聚氯乙烯; 生产技术; 悬浮法; 乙炔法; 乙烯法; 防粘釜技术;引言 聚氯乙烯(PVC)是5大通用塑料之一,具有耐腐蚀、电绝缘、阻燃性和机械强度高等优异性能,广泛用于工农业及日常生活等各个领域,尤其是近年来建筑市场对PVC产品的巨大需求,使其成为具备相当竞争力的一个塑料品种。 PVC糊树脂自20世纪30年代开发以来,已有近70年的历史。目前全世界PVC糊树脂总生产能力约200万t/a,其中,西欧是PVC糊树脂生产厂家最多、产量最大的地区。我国聚氯乙烯工业起步于于50年代,仅次于酚醛树脂是最早工业

3、化生产的热塑性树脂,第一个PVC装置于1958年在锦西化工厂建成投产,生产能力为3000吨年。此后全国各地的PVC装置相继建成投产,到目前为止,我国有PVC树脂生产企业80余家,遍布全国29个省、市、自治区,总生产能力达220万吨年7075万t/a。PVC树脂在我国塑料工业中具有举足轻重的地位,同时PVC作为氯碱工业中最大的有机耗氯产品,对维持氯碱工业的氯碱平衡具有极其重要的作用。 本设计为年产量3.26万吨聚氯乙烯车间聚合工段工艺。本次设计采用了氯乙烯单体悬浮聚合工艺。介绍了PVC的聚合工艺,及合成聚氯乙烯的流程和设备,对整个生产工艺做出了详细的叙述。第一章 总论1.1 国内外 pvc发展状

4、况及发展趋势聚氯乙烯( PVC)是五大热塑性合成树脂之一,塑料制品是最早实现工业化的品种之一。可通过模压、层合、注塑、挤塑、压延、吹塑中空等方式进行加工,而且具有较好的机械性能、耐化学腐蚀性和难燃性等特点,以其低廉的价格和非常突出的性能而广泛地用于生产板材、门窗、管道和阀门等硬制品,也用于生产人造革、薄膜、电线电缆等软制品。近年来,尽管在发达国家受到来自环保等多方面的压力,但世界对的总需求量仍出现稳定的增长态势。我国聚氯乙烯(PVC)工业起步于50年代,仅次于酚醛树脂是最早工业化生产的热塑性树脂,第一个PVC装置于1958年在锦西化工厂建成投产,生产能力为3000吨年1。此后全国各地的PVC装

5、置相继建成投产,到目前为止,我国有PVC树脂生产企业80余家,遍布全国29个省、市、自治区,总生产能力达220万吨年。1992 年,世界 生产能力约为二千二百万吨,需求量为1900万吨 ;2002 年世界总产能约为三千四百万吨,消费量约为二千八百万吨;2009年世界生产能力已上升到约三千九百万吨,需求量约为三千七百万吨;2010 年世界生产能力为 4300万吨 ,需求量4200 万吨 。尽管目前世界对PVC的生产和使用存在许多争议,特别在欧洲,对PVC 生产和制品的环保制约政策越来越严厉,但由于性能优良,生产成本低廉,仍具有较强的活力,特别在塑料门窗、塑料管道等建材领域。PVC由氯乙烯(VCM

6、)聚合而成,工业生产一般采用4种聚合方式:悬浮聚合、本体聚合、乳液聚合(禽微悬浮聚合)、溶液聚合。其中悬浮法PVC(SPVC)树脂产量最高,占80,其次是乳液法PVC(EPVC),本体法PVC(MPVC)。VCM悬浮聚合是以水为介质,加入VCM、分散剂、引发剂、pH值调节剂等,在搅拌和一定温度条件下进行聚合反应;VCM本体聚合仅在VCM和引发剂存在下进行,无分散剂、表面活性剂等助剂;VCM乳液聚合在VCM、引发剂、乳化剂、H2O以及其他助剂存在下进行而VCM溶液聚合是在VCM、;引发刘和溶剂存在下进行,这种方法有溶剂回收和残留污染问题,并且生产成本高,该方法已逐渐被悬浮法聚合或乳液法聚合代。目

7、前,生产PVC树脂主要采用悬浮法,少量采用乳液法及本体法。PVC可分为硬PVC和软PVC。其中硬PVC大约占市场的2/3,软PVC占1/3。软PVC一般用于地板、天花板以及皮革的表层,但由于软PVC中含有柔软剂(这也是软PVC与硬PVC的区别),容易变脆,不易保存,所以其使用范围受到了局限。硬PVC不含柔软剂,因此好,易成型,不易脆,无毒无污染,保存时间长,因此具有很大的 开发应用价值。下文均简称PVC。软质PVC多用来做成薄膜,用于各类面板的表层包装,所以又被称为装饰膜、附胶膜,应用于建材、包装、医药等诸多行业。其中建材行业占的比重最大,为60%,其次是包装行业,还有其他若干小范围应用的行业

8、。中国聚氯乙烯工业有着广阔的发展前景,中国地大物博、人口众多,为聚氯乙烯产品提供了广大的市场。在进入21世纪以后,我们要学习和借鉴国外的先进技术和发展模式,结合我国的具体情况,发展我国的聚氯乙烯工业。我们要发挥全行业的力量,克服前进过程中的各种困难,一定能够在较短的时间内赶上世界聚氯乙烯工业的先进水平4。1.2 单体合成工艺路线1.2.1乙烯路线 乙烯氧氯化法由美国公司Goodrich 首先实现工业化生产,该工艺原料来源广泛,生产工艺合理,目前世界上采用本工艺生产的产能VCM约占总产能的VCM 95%以上。乙烯氧氯化法的反应工艺分为乙烯直接氯化制二氯乙烷(EDC)、乙烯氧氯化制EDC和EDC裂

9、解3个部分,生产装置主要由直接氯化单元、氧氯化单元、EDC裂解单元、EDC 精制单元和VCM单元精制等工艺单元组成。乙烯和氯气在直接氯化单元反应生成EDC。乙烯、氧气以及循环的HCl在氧氯化单元生成EDC。生成的粗EDC在EDC精制单元精制、提纯。然后在精EDC 裂解单元裂解生成的产物进入VCM单元,VCM精制后得到纯VCM产品,未裂解的EDC返回EDC精制单元回收,而HCl则返回氧氯化反应单元循环使用。直接氯化有低温氯化法和高温氯化法; 氧氯化按反应器型式的不同有流化床法和固定床法, 按所用氧源种类分有空气法和纯氧法;EDC裂解按进料状态分有液相进料工艺和气相进料工艺等。具有代表性的 司的I

10、novyl工艺是将乙烯氧氯化法提纯的循环 EDC和VCM直接氯化的 EDC在裂解炉中进行裂解生产VCM 。HCl经急冷和能量回收后,将产品分离出 HCl(循环用于氧氯化)、高纯度VCM和未反应的EDC(循环用于氯化和提纯)。来自VCM装置的含水物流被汽提,并送至界外处理,以减少废水的生化耗氧量(BOD)。采用该生产工艺,乙烯和氯的转化率超过98%,目前世界上已经有50多套装置采用该工艺技术,总生产能力已经超过470万吨/年6。1.2.2乙炔路线 原料为来自电石水解产生的乙炔和氯化氢气体,在催化剂氧化汞的作用下反应生成氯乙烯。 具体工艺为:从乙炔发生器来的乙炔气经水洗一塔温度降至35以下,在保证

11、乙炔气柜至一定高度时,进入升压机组加压至80kpaG左右,加压后的乙炔气先进入水洗二塔深度降温至10以下,再进入硫酸清净塔中除去粗乙炔气中的S、P等杂质。 最后进入中和塔中和过多的酸性气体,处理后的乙炔气经塔顶除雾器除去饱和水分,制得纯度达98.5%以上,不含S、P的合格精制乙炔气送氯乙烯合成工序。 乙炔法路线VCM 工业化方法,设备工艺简单,但耗电量大,对环境污染严重。目前,该方法在国外基本上已经被淘汰,由于我国具有丰富廉价的煤炭资源,因此用煤炭和石灰石生成碳化钙电石、然后电石加水生成乙炔的生产路线具有明显的成本优势,我国的VCM 生产目前仍以乙炔法工艺路线为主。乙炔与氯化氢反应生成 可采用

12、气相或液VCM相工艺,其中气相工艺使用较多5。本设计采用乙烯路线生产氯乙烯单体。1.3聚合工艺实践方法 目前,世界上PVC的主要生产方法有4种:悬浮法、本体法、乳液法和微悬浮法。其中以悬浮法生产的PVC占PVC总产量的近90%,在PVC生产中占重要地位,近年来,该技术已取得突破性进展。1.3.1悬浮聚合生产工艺因采用悬浮法PVC生产技术易于调节品种,生产过程易于控制,设备和运行费用低,易于大规模组织生产而得到广泛的应用,成为诸多生产工艺中最主要的生产方法。悬浮聚合法的典型生产工艺过程是将单体、水、引发剂、分散剂等加入反应釜中,加热,并采取适当的手段使之保持在一定温度下进行聚合反应,反应结束后回

13、收未反应单体,离心脱水、干燥得产品。 工艺特点:悬浮聚合法生产聚氯乙烯树脂的一般工艺过程是在清理后的聚合釜中加入水和悬浮剂、抗氧剂,然后加入氯乙烯单体,在去离子水中搅拌,将单体分散成小液滴,这些小液滴由保护胶加以稳定,并加入可溶于单体的引发剂或引发剂乳液,保持反应过程中的反应速度平稳,然后升温聚合,一般聚合温度在4570之间。使用低温聚合时(如4245),可生产高分子质量的聚氯乙烯树脂;使用高温聚合时(一般在6271)可生产出低分子质量(或超低分子质量)的聚氯乙烯树脂。近年来,为了提高聚合速度和生产效率,国外还研究成功两步悬浮聚合工艺,一般是第一步聚合度控制在600左右,在第二步聚合前加入部分

14、新单体继续聚合。采用两步法聚合的优点是显著缩短了聚合周期,生产出的树脂具有良好的凝胶性能、模塑性能和机械强度。现在悬浮法聚氯乙烯品种日益广泛,应用领域越来越广,除了通用型的树脂外,特殊用途的专用树脂的开发越来越引起PVC厂家的关注,球形树脂、高表观密度建材专用树脂、消光树脂、超高(或超低)分子质量树脂等已成为开发的热点。1.3.2乳液聚合生产工艺氯乙烯乳液聚合方法的最终产品为制造聚氯乙烯增塑糊所用的的聚氯乙烯糊树脂(E-PVC),工业生产分两个阶段:第一阶段氯乙烯单体经乳液聚合反应生成聚氯乙烯胶乳,它是直径0.13微米聚氯乙烯初级粒子在水中的悬浮乳状液。第二阶段将聚氯乙烯胶乳,经喷雾干燥得到产

15、品聚氯乙烯糊树脂,它是初级粒子聚集而成得的直径为1100微米,主要是2040微米的聚氯乙烯次级粒子。这种次级粒子与增塑剂混合后,经剪切作用崩解为直径更小的颗粒而形成不沉降的聚氯乙烯增塑糊,工业上称之为聚氯乙烯糊。1.4最佳的配方、后处理设备的选择1.4.1配方的选择单体: 氯乙烯纯度99.98%以上。分散剂: 主分散剂主要是纤维素醚和部分水解的聚乙烯醇。纤维素应为水溶性衍生物,如甲基纤维素、羟乙基纤维素、羟丙基纤维素等,聚乙烯醇应由聚醋酸乙烯酯经碱性水解得到,影响其分散效果的因素为其聚合度和水解度,而且-OH基团为嵌段分布时效果最好;副分散剂主要是小分子表面活性剂和地水解度聚乙烯醇。常用非离子

16、型的脱水山梨醇单月硅酸酯。本设计采用88%聚乙烯醇和72.5%的聚乙烯醇。引发剂: 由于聚乙烯悬浮聚合温度5060度上下,应根据反应温度选择合适的引发剂,其原则为在反应温度条件下引发剂的半衰期约为2小时最佳。常用过氧化乙酰环己烷硫酰、过氧化二月桂酰、过碳酸二环己酯等。本设计采用过氧化二碳酸-2-乙基己酯。终止剂:反应结束后残余的自由基和引发剂残留在树脂内, 为了保证产品质量, 需要消除它们, 故而加入终止剂。本设计的终止剂为丙酮缩氨基硫脲。当反应出现紧急事故时,采用紧急终止剂ON终止反应。阻聚剂:本设计采用壬基苯酚作为阻聚剂。缓冲剂: 碳酸钠、三聚磷酸钠、磷酸钠、氢氧化钠、氢氧化钙、碳酸铵。本

17、设计采用磷酸三钙。1.4.2后处理设备侧选择 聚合釜容积:工业化大生产使用问歇悬浮法聚合釜容量一般为60107立方米。我国已开发出70立方米聚合釜,样机已在锦西化工机械厂研制成功。本设计采用76立聚合釜。采用微机控制,提高了批次之间树脂质量的稳定性,且消耗定额低。传热方式: 传热能力直接影响着聚合反应的速度和生成物的质量,也影响着产量。在大型聚合釜上,国外采用了体外回流冷凝器,体内增设内冷管等除热手段。近几年,美国古德里奇公司又研制出一种薄不锈钢衬里聚合釜,以便提高釜壁的传热能力,为使薄壁能承受反应压力,在不锈钢衬里与聚合釜套之间安装了支撑内衬套的加强筋,这种釜的结构大大提高了聚合釜传热效率,

18、且有较好的承压能力9。 搅拌方式 : 搅拌能力是聚合釜的关键技术指标之一,搅拌能力直接影响着传质、传热及树脂的粒态分布,最终影响产品的质量,而不同的工艺方法对搅拌的要求又不尽相同。过去,PVC聚合釜大都采用平桨和折叶桨,搅拌效果不甚理想。随着搅拌技术的不断进步及搅拌试验手段的不断提高,使我们有条件为PVC釜配备更理想的搅拌器。大量的搅拌实验研究证明,三叶后掠式搅拌器的传质效果好,循环和剪切性能均适合于PVC生产的需要,因此,本设计在PVC生产中采用三叶后掠式搅拌器。 干燥系统 : 干燥系统发展迅速,主要有2 种方式, 即气流干燥和流态化干燥。我国PVC工业化生产最初主要用的是气流干燥器,但是随

19、着聚合工艺技术的发展, 聚合生产能力提高, 树脂产品也朝着疏松型发展, 气流干燥器从生产能力和干燥效果等方面已经不能满足生产的需要,后来发展到气流干燥器, 沸腾床干燥器和冷风冷却3段干燥技术。但这样动力消耗大, 产品质量不是很好。目前主要用的是旋风干燥器和卧式内加热流化床。旋风干燥器结构简单, 投资较少, 目前很多装置都在用。卧式内加热流化床综合能耗比旋风干燥器要低, 主要有多室沸腾床和两段沸腾床2 种。但在生产中发现多室沸腾床的花板容易漏料, 不同牌号切换时比较麻烦, 且生产能力有限。两段流化床改进了, 操作稳定性好, 易于产品牌号的切换, 生床的花板产能力较大。 本设计中采用卧式内加热流化

20、床。离心机:对浆料进行离心脱水,得到含水量25%的聚氯乙烯。PVC生产过程中需要大量的逻辑判断和离散控制,因此本设计采用二位式控制组件,如通/断式二位开关阀控制各种物料的传输,和二位控制的电机和泵机。气体塔:汽提技术及设备也有改进汽提塔朝着节能、高效的方向发展。现在常用的汽提塔主要有溢流堰筛板塔和无堰筛板塔, 有堰筛板塔传质传热仅在筛板上进行, 在板间移动时只有传热没有传质, 而无堰筛板塔在塔内一直都在传质, 目前传热。因此无堰筛板塔效率高于有溢流堰的塔,无堰筛板塔的塔盘设计也逐渐合理科学化, 塔盘的厚度, 开孔率在实践中逐渐优化, 并被纳入设计体系中。很多无堰筛板塔塔盘是整体装卸的, 随着生

21、产能力的提高, 设备 整体装卸很不方便, 目前, 生产能力较大的的增大汽提塔的塔盘, 可以采用可拆卸式的塔盘。汽提塔的塔顶操作压力也逐渐从微正压操作向微负压操作发展, 使得塔顶物料沸腾温度低, 节约了蒸汽却提高了单体脱出效率。为了强化汽提效果, 浆料经过汽提后利用重力作用进入闪蒸罐, 进一步汽提, 降温10。因此,本设计采用无堰筛板塔。1.5 防粘釜技术聚合釜的防粘釜是聚合生产中最重要的工序之一。防粘釜效果好的釜, 能有较好的传热系数, 能减少因此产生的塑化片。防粘釜一直是聚合生产的重要工作, 这方面得到了很大的发展。首先, 聚合釜的表面抛光质量有了很大的提高且内件简单化、圆滑化。其次, 通过

22、专用的设备使用高效的防粘釜剂, 实行聚合釜自动喷涂防粘釜液和自动水冲洗釜。釜涂布与水洗设备分开, 釜内设置双伸缩头自动喷洗高压水枪, 设定双固定或者可伸缩涂布设备(如费阀,喷吐环等)。目前, 先进的防粘釜技术是冲洗、喷涂与高效防粘釜剂的结合体。整个防粘技术过程全部采用DCS自动操作。首先打开蒸汽进料阀喷入适量的蒸汽, 用泵将已配制成规定浓度的涂壁剂注入蒸汽管路, 借助蒸汽流速使其雾化进釜, 在釜壁形成一层均匀的疏油亲水膜, 在聚合过程中此膜有效地防止有机相与釜壁接触, 从而起到防粘釜的作用。为了达到较好的涂壁效果, 对于喷涂的蒸汽, 防粘釜剂的压力逐步优化, 对于防粘釜剂的量也根据釜的特点而定

23、。涂壁完成后, 冷却一段时间使防粘釜剂更好地粘在釜上,之后用清洗水冲釜以彻底冲掉多余的防粘剂11。目前国内生产用的防粘釜剂主要有意大利黄, 美PVC国红, 英国蓝。经过实践, 意大利黄在防粘釜效果和对产品白度的影响方面有利于生产, 但价格较高。为了生产更高质量的聚乙烯,产品本设计采用意大利黄防粘釜剂。1.6原料及产品性能氯乙烯 : CH2=CHCl 分子量 62.50 ,无色易液化的气体。液体的密度0912lgcm3。沸点-139。凝固点-160。自燃点472。临界温度142。临界压力55.2Pa。难溶于水,溶于乙醇、乙醚、丙酮和二氯乙烷。易聚合,能与丁二烯、乙烯、丙烯、内烯腈、醋酸乙烯、两烯

24、酸酯和马来酸酯等共聚。能与空气形成爆炸性混合物,爆炸极限36-264。遇明火、高温有燃烧爆炸的危险。 无空气和水分的纯氯乙烯很稳定,对碳钢无腐蚀作用。有氧存在时,氯乙烯过 氧化物,它可与水生成盐酸从而腐蚀设备,过氧化物还可以使氯乙烯产生自聚作用。长距离 运输时应加入阻聚剂氢醌。PVC树脂:密度1.4 ;工业品是白色或浅黄色粉末;低分子量的易溶于酮类、酯类和氯代烃类溶剂,高分子量的则难溶;用于制塑料、涂料和合成纤维等。根据所加增塑剂的多少,可制成软质和硬质塑料。前者可用于制透明薄膜(如雨衣、台布、包装材料、农膜等)、人造革、泡沫塑料和电线套层等。后者可用于制板材、管道、阀门和门窗等;具有极好的耐

25、化学腐蚀性,但热稳定性和耐光性较差,在100以上或长时间阳光暴晒开始分解出氯化氢,制造塑料时需加稳定及,电绝缘性优良。不会燃烧。分散剂聚乙烯醇:是一种高分子聚合物,无臭、无毒,外观为白色或微黄色絮状、片状或粉末状固体。分子式为(C2H4O)n,絮状PVA的假比重为(0.21 0.30)g/cm3,片状PVA的假比重为(0.470.06)g/cm3。 聚乙烯醇有较好的化学稳定性及良好的绝缘性、成膜性。具有多元醇的典型化学性质,能进行酯化、醚化及缩醛化等反应。引发剂过氧化二碳酸(2乙基己基)酯 : 本品为无色透明液体,EHP活性氧2.70%,NaCl含量0.20%;相对密度0.964。商品为50%

26、65%的甲苯、二甲苯、矿物油溶液;理论活性氧含量4.62%。含量为46%的EHP溶液的半衰期为40,10.33h;50,1.5h;受热或见光易分解,储运温度15,时间少于3个月。1.7 聚合机理1.7.1链反应动力学机理 链反应动力学来看,根据转化率可分为三阶段: 转化率5%阶段。聚合反应发生在单体相中,由于所产生的聚合物数量甚少,反应速度服从典型的动力学方程,聚合反应速度与引发剂用量的平方根成正比,当聚合物的生产量增加后,则聚合速度由于kt降低而发生偏差。 转化率5%65%阶段。聚合反应在富单体和聚氯乙烯单体凝胶中间是进行,并且产生自动加速现象。其原因在于链终止反应主要在两个增长的大分子自由

27、基之间进行,而他们在粘稠的聚合物单体凝胶相的扩散速度显著降低,因而链终止速度减慢,所以聚合速度加快,呈现自动加速现象。 转化率65%阶段。转化率超过65%以后,游离的氯乙烯基本上消失,釜内压力开始下降,此时聚合反应发生在聚合物凝胶相中,由于残存的氯乙烯逐渐消耗,凝胶相得粘度迅速增高,因此聚合反应速度仍继续上升,大到最大值后逐渐降低。当聚合反应速率低于总反应速率以后,使反应终止。1.7.2自由基聚合机理氯乙烯悬浮聚合反应,属于自由基链锁加聚反应,它的反应一般由链引发,链增长,链终止,链转移及基元反应组成。 链引发 过氧化物引发剂受热后过氧链断裂生成两个自由基:初级自由基与VCM形成单体自由基。

28、链增长 单体自由基具有很高的活性,所以打开单体的双键形成自由基,新的自由基活性并不衰减,继续与其它单体反应生成更多的链自由基。 链终止 聚合反应不断进行,当达到一定的聚合度,分子链己足够长,单体的浓度逐渐降低,使大分子的活动受到限制,就会大分子失去活性即失去电子而终 止与其它氯乙烯活性分子反应。终止有偶合终止和歧化终止。 l)偶合终止 两个活性大分子自由基相遇时,两个自由基头部独立电子对配对形成共价键所形成的饱和大分子叫偶合终止。 2)歧化终止两个活性大分子自由基相遇时,其中一个自由基夺取另一个自由基上的氢原子而饱和,另一个高分子自由基失去一个氢原子而带有不饱和基团,这种终止反应的方式叫双基歧

29、化终止。有时活性大分子自由基与金属器壁中的自由电子结合而终止,即形成粘釜。链转移 在氯乙烯聚合反应中,大分子自由基可以从单体,溶剂,一个氯原子或氢原子而终止,失去原子的分子将成为自由基,引发剂或大分子上夺取继续进行新的链增长反应。包括向单体的氯转移、向溶剂链转移、向引发剂链转移、向大分子。1.7.3 成粒机理与颗粒形态关于氯乙烯悬浮聚合过程生成多孔性不规整的理论解释,认为成粒过程分为两部分;单体在水中的分散和发生在水相和氯乙烯水相界面发生的反应,此过程主要控制聚氯乙烯颗粒的大小及其分布。在单体液滴内和聚氯乙烯凝胶相内发生的化学与物理过程,此过程主要控制所得聚氯乙烯颗粒的形态。 在聚合反应釜中液

30、态氯乙烯单体在强力搅拌和分散剂的作用下,被破碎为平均直径3040m的液珠分散于水相中,单体液珠与水相得界面上吸附了分散剂。当聚合反应发生以后,界面层上的分散剂发生氯乙烯接枝聚合反应,使分散剂的活动性和分散保护作用降低,液珠开始由于碰击而合并为较大粒子,并处于动态平衡状态。此时单体转化率约为4%5%。当转化率进一步提高,达到20%左右后,由于分散剂接枝反应的色深入,能够阻止粒子碰击合并,所以所得聚氯乙烯颗粒数目开始处于稳定不变的状态,因而此后的搅拌速度对于产品的平均粒径不再发生影响。最终产品的粒径在100180m范围,个商品牌号的粒径个有其具体范围,取决于生产的聚氯乙烯树脂用途、分散剂类型、用量

31、和反应起始阶段的搅拌速度等参数。通常是使用的分散剂浓度高,则易得空隙率低(10%)的圆球状树脂颗粒,尤其是使用明胶作为分散剂是,其影响最为明显。由于地孔隙率树脂的反应结束后,脱除残存的单体较困难,而且吸收增塑剂速度慢,难以塑化所以逐渐淘汰。产品的平均粒径因不同用途而有所不同要求:用于生产软质制品的聚氯乙烯树脂平均粒径要求低些在100130m左右;用于生产硬质制品者要求在150180m范围;分子量较低的牌号则要求在130160m范围。此数据不能绝对化,因工厂生产条件的不同而有所不同。转移。1.8影响聚合及产品质量的因素 因素有搅拌、分散剂、聚合温度等,结合树脂的成粒过程等。 搅拌:在悬浮聚合过程

32、中,搅拌对聚氯乙烯树脂颗粒形态的影响主要表现在影响PVC树脂的粒径及分布、孔隙率等,但搅拌的作用与分散剂的性质互相影响、互相补充。增加搅拌度将使悬浮分散体系内液滴变细,PVC树脂平均粒子变小,但搅拌强度过大,又将促使体系内液滴碰撞聚并,使PVC树脂的平均粒径变大。PVC树脂平均粒径与搅拌转速的关系曲线呈马鞍形。随着搅拌转速的增加,能使聚氯乙烯树脂的初级直径变小,孔隙率增加,吸油率增大。 分散剂:在搅拌特性固定的条件下,分散剂种类、性质和用量则成为控制树脂颗粒性的关键因素。在聚合过程中,分散剂影树脂颗粒的宏观微观两层次的成粒。就宏观而言,要求分散剂应具有降低单体和的界面张力,以利于VCM的分散和保护滴或颗粒,减少聚并。单一分散剂较难同时满足上两方面要求,为制得颗粒规整、粒度分布中,既疏松表观密度又适合的聚氯乙烯脂,往往将两种和两种

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1