ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:194.84KB ,
资源ID:7845628      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7845628.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(IGBT的工作原理和工作特性 2.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

IGBT的工作原理和工作特性 2.docx

1、IGBT的工作原理和工作特性 2IGBT的工作原理与工作特性 IGBT的开关作用就是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法与MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。IGBT的工作特性包括静态与动态两类:1.静态特性IGBT的静态特性主要有伏安特性、转移特性与开关特性。IGBT的伏安特性就是指以

2、栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱与区1、放大区2与击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT的转移特性就是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内

3、,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。IGBT的开关特性就是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示:Uds(on)Uj1UdrIdRoh (214) 式中Uj1JI结的正向电压,其值为0、7IV; Udr扩展电阻Rdr上的压降;Roh沟道电阻。通态电流Ids可用下式表示:Ids=(1+Bpnp)Imos (215) 式中Imos流过MOSFET的电流。由于N+区

4、存在电导调制效应,所以IGBT的通态压降小,耐压1000V的IGBT通态压降为23V。IGBT处于断态时,只有很小的泄漏电流存在。2.动态特性IGBT在开通过程中,大部分时间就是作为MOSFET来运行的,只就是在漏源电压Uds下降过程后期,PNP晶体管由放大区至饱与,又增加了一段延迟时间。td(on)为开通延迟时间,tri为电流上升时间。实际应用中常给出的漏极电流开通时间ton即为td(on)tri之与。漏源电压的下降时间由tfe1与tfe2组成,如图258所示 IGBT 在关断过程中,漏极电流的波形变为两段。因为 MOSFET 关断后, PNP 晶体管的存储电荷难以迅速消除,造成漏极电流较长

5、的尾部时间, td(off) 为关断延迟时间, trv 为电压 Uds(f) 的上升时间。实际应用中常常给出的漏极电流的下降时间 Tf 由图 259 中的 t(f1) 与 t(f2) 两段组成,而漏极电流的关断时间 t(off)=td(off)+trv + t(f) ( 216 ) 式中, td(off) 与 trv 之与又称为存储时间。 IGBT的基本结构绝缘栅双极晶体管(IGBT)本质上就是一个场效应晶体管,只就是在漏极与漏区之间多了一个 P 型层。根据国际电工委员会的文件建议,其各部分名称基本沿用场效应晶体管的相应命名。 图1所示为一个N 沟道增强型绝缘栅双极晶体管结构,N+区称为源区,

6、附于其上的电极称为源极。 N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P型区(包括P+与P一区)(沟道在该区域形成),称为亚沟道区(Subchannel region )。而在漏区另一侧的 P+ 区称为漏注入区(Drain injector ),它就是 IGBT 特有的功能区,与漏区与亚沟道区一起形成 PNP 双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。 为了兼顾长期以来人们的习惯,IEC规定:源极引出的电极端子(含电极端)称为发射极端(子),漏极引出的电极端(子)称为集电

7、极端(子)。这又回到双极晶体管的术语了。但仅此而已。 IGBT的结构剖面图如图2所示。它在结构上类似于MOSFET ,其不同点在于IGBT就是在N沟道功率MOSFET 的N+基板(漏极)上增加了一个P+ 基板(IGBT 的集电极),形成PN结j1 ,并由此引出漏极、栅极与源极则完全与MOSFET相似。图1 N沟道IGBT结构图2 IGBT的结构剖面图由图2可以瞧出,IGBT相当于一个由MOSFET驱动的厚基区GTR ,其简化等效电路如图3所示。图中Rdr就是厚基区GTR的扩展电阻。IGBT就是以GTR 为主导件、MOSFET 为驱动件的复合结构。 N沟道IGBT的图形符号有两种,如图4所示。实

8、际应用时,常使用图25所示的符号。对于P沟道,图形符号中的箭头方向恰好相反,如图4所示。 IGBT 的开通与关断就是由栅极电压来控制的。当栅极加正电压时,MOSFET 内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT导通,此时,从P+区注到N一区进行电导调制,减少N一区的电阻 Rdr值,使高耐压的 IGBT 也具有低的通态压降。在栅极上加负电压时,MOSFET 内的沟道消失,PNP晶体管的基极电流被切断,IGBT 即关断。 正就是由于 IGBT 就是在N 沟道 MOSFET 的 N+ 基板上加一层 P+ 基板,形成了四层结构,由PNPNPN晶体管构成 IGBT 。但就是,NPN晶体管与

9、发射极由于铝电极短路,设计时尽可能使NPN不起作用。所以说, IGBT 的基本工作与NPN晶体管无关,可以认为就是将 N 沟道 MOSFET 作为输入极,PNP晶体管作为输出极的单向达林顿管。 采取这样的结构可在 N一层作电导率调制,提高电流密度。这就是因 为从 P+ 基板经过 N+ 层向高电阻的 N一层注入少量载流子的结果。 IGBT 的设计就是通过 PNPNPN 晶体管的连接形成晶闸管。2、IGBT模块的术语及其特性术语说明术语符号定义及说明(测定条件参改说明书)集电极、发射极间电压 VCES 栅极、发射极间短路时的集电极,发射极间的最大电压 栅极发极间电压 VGES 集电极、发射极间短路

10、时的栅极,发射极间最大电压 集电极电流 IC 集电极所允许的最大直流电流 耗散功率PC 单个IGBT所允许的最大耗散功率 结温 Tj 元件连续工作时芯片温厦 关断电流 ICES 栅极、发射极间短路,在集电极、发射极间加上指定的电压时的集电极电流。漏电流 IGES 集电极、发射极间短路,在栅极、集电极间加上指定的电压时的栅极漏电流 饱与压降V CE(sat) 在指定的集电极电流与栅极电压的情况下,集电极、发射极间的电压。输入电容 Clss 集电极、发射极间处于交流短路状态,在栅极、发射极间及集电极、发射极间加上指定电压时,栅极、发射极间的电容 3、IGBT模块使用上的注意事项1、 IGBT模块的

11、选定 在使用IGBT模块的场合,选择何种电压,电流规格的IGBT模块,需要做周密的考虑。a、 电流规格IGBT模块的集电极电流增大时,VCE(-)上升,所产生的额定损耗亦变大。同时,开关损耗增大,原件发热加剧。因此,根据额定损耗,开关损耗所产生的热量,控制器件结温(Tj)在 150oC以下(通常为安全起见,以125oC以下为宜),请使用这时的集电流以下为宜。特别就是用作高频开关时,由于开关损耗增大,发热也加剧,需十分注意。一般来说,要将集电极电流的最大值控制在直流额定电流以下使用,从经济角度这就是值得推荐的。b、电压规格 IGBT模块的电压规格与所使用装置的输入电源即市电电源电压紧密相关。其相

12、互关系列于表1。根据使用目的,并参考本表,请选择相应的元件。 元器件电压规格600V1200V1400V电源电压200V;220V;230V;240V346V;350V;380V;400V;415V;440V575V2、 防止静电IGBT的VGE的耐压值为20V,在IGBT模块上加出了超出耐压值的电压的场合,由于会导致损坏的危险,因而在栅极-发射极之间不能超出耐压值的电压,这点请注意。在使用装置的场合,如果栅极回路不合适或者栅极回路完全不能工作时(珊极处于开路状态),若在主回路上加上电压,则IGBT就会损坏,为防止这类损坏情况发生,应在栅极一发射极之间接一只10k左左的电阻为宜。此外,由于IG

13、BT模块为MOS结构,对于静电就要十分注意。因此,请注意下面几点:1)在使用模块时,手持分装件时,请勿触摸驱动端子部份。2)在用导电材料连接驱动端子的模块时,在配线未布好之前,请先不要接上模块。3)尽量在底板良好接地的情况下操作。4)当必须要触摸模块端子时,要先将人体或衣服上的静电放电后,再触摸。 5)在焊接作业时,焊机与焊槽之间的漏泄容易引起静电压的产生,为了防止静电的产生,请先将焊机处于良好的接地状态下。6)装部件的容器,请选用不带静电的容器。3、并联问题用于大容量逆变器等控制大电流场合使用IGBT模块时,可以使用多个器件并联。并联时,要使每个器件流过均等的电流就是非常重要的,如果一旦电流

14、平衡达到破坏,那么电过于集中的那个器件将可能被损坏。 为使并联时电流能平衡,适当改变器件的特性及接线方法。例如。挑选器件的VCE(sat)相同的并联就是很重要的。4、其她注意事项1)保存半导体原件的场所的温度,温度,应保持在常温常湿状态,不应偏离太大。常温的规定为535,常湿的规定为4575左右。2)开、关时的浪涌电压等的测定,请在端子处测定。实验目的1.熟悉IGBT主要参数与开关特性的测试方法。2.掌握混合集成驱动电路EXB840的工作原理与调试方法。二、实验内容1.IGBT主要参数测试。2.EXB840性能测试。3.IGBT开关特性测试。4.过流保护性能测试。三、实验设备与仪器1.MCL系

15、列教学实验台主控制屏 2.MCL07电力电子实验箱中的IGBT与PWM波形发生器部分。3.万用表二块 4.双踪示波器。 四、实验线路见图51。五、实验方法 1.IGBT主要参数测试(1)开启阀值电压VGS(th)测试在主回路的“1”端与IGBT的“18”端之间串入毫安表,将主回路的“3”与“4”端分别与IGBT管的“14”与“17”端相连,再在“14”与“17”端间接入电压表,并将主回路电位器RP左旋到底。将电位器RP逐渐向右旋转,边旋转边监视毫安表,当漏极电流ID=1mA时的栅源电压值即为开启阀值电压VGS(th)。读取67组ID、Vgs,其中ID=1mA必测,填入表51。表51ID(mA)

16、1Vgs(V)(2)跨导gFS测试在主回路的“2”端与IGBT的“18”端串入安培表,将RP左旋到底,其余接线同上。将RP逐渐向右旋转,读取ID与对应的VGS值,测量56组数据,填入表52。表52ID(mA)1Vgs(V)(3)导通电阻RDS测试将电压表接入“18”与“17”两端,其余同上,从小到大改变VGS,读取ID与对应的漏源电压VDS,测量56组数据,填入表53。表53ID(mA)1Vgs(V) 2.EXB840性能测试(1)输入输出延时时间测试IGBT部分的“1”与“13”分别与PWM波形发生部分的“1”与“2”相连,再将IGBT部分的“10”与“13”、与门输入“2”与“1”相连,用

17、示波器观察输入“1”与“13”及EXB840输出“12” 与“13”之间波形,记录开通与关断延时时间。ton= ,toff= 。 (2)保护输出部分光耦延时时间测试将IGBT部分“10”与“13”的连线断开,并将“6”与“7”相连。用示波器观察“8”与“13”及“4”与“13” 之间波形,记录延时时间。(3)过流慢速关断时间测试接线同上,用示波器观察“1”与“13”及“12”与“13”之间波形,记录慢速关断时间。(4)关断时的负栅压测试断开“10”与“13”的相连,其余接线同上,用示波器观察“12”与“17”之间波形,记录关断时的负栅压值。(5)过流阀值电压测试断开“10”与“13”,“2”与

18、“1”的相连,分别连接“2”与“3”,“4”与“5”,“6”与“7”,将主回路的“3”与“4”分别与“10”与“17”相连,即按照以下表格的说明连线。RP左旋到底,用示波器观察“12”与“17”之间波形,将RP逐渐向右旋转,边旋转边监视波形,一旦该波形消失时即停止旋转,测出主回路“3”与“4”之间电压值,该值即为过流保护阀值电压值。(6)4端外接电容器C1功能测试供教师研究用EXB840使用手册中说明该电容器的作用就是防止过流保护电路误动作(绝大部分场合不需要电容器)。a.C1不接,测量“8”与“13”之间波形。b.“9”与“13”相连时,测量“8”与“13” 之间波形,并与上述波形相比较。3

19、.开关特性测试(1)电阻负载时开关特性测试将“1”与“13”分别与波形发生器“1”与“2”相连,“4”与“5”,“6”与“7”,2“与”3“,“12”与“14”,“10”与“18”,“17”与“16”相连,主回路的“1”与“4”分别与IGBT部分 的“18”与“15”相连。即按照以下表格的说明连线。用示波器分别观察“18”与“15”及“14”与“15”的波形,记录开通延迟时间。(2)电阻,电感负载时开关特性测试将主回路“1”与“18”的连线断开,再将主回路“2”与“18”相连,用示波器分别观察“18”与“15”及“16”与“15”的波形,记录开通延迟时间。(3)不同栅极电阻时开关特性测试将“1

20、2”与“14”的连线断开,再将“11”与“14”相连,栅极电阻从R53k改为R4=27,其余接线与测试方法同上。 4.并联缓冲电路作用测试(1)电阻负载,有与没有缓冲电路时观察“14”与“17”及“18”与“17”之间波形。(2)电阻,电感负载,有与没有缓冲电路时,观察波形同上。5.过流保护性能测试,栅计电阻用R4在上述接线基础上,将“4”与“5”,“6”与“7”相连,观察“14”与“17”之间波形,然后将“10”与“18”之间连线断开,并观察驱动波形就是否消失,过流指示灯就是否发亮,待故障消除后, 揿复位按钮即可继续进行试验。六、实验报告1.根据所测数据,绘出IGBT的主要参数的表格与曲线

21、。2.绘出输入、输出及对光耦延时以及慢速关断等波形,并标出延时与慢速关断时间。3.绘出所测的负栅压值与过流阀值电压值。4.绘出电阻负载,电阻电感负载以及不同栅极电阻时的开关波形,并在图上标出tON 与tOFF。5.绘出电阻负载与电阻、电感负载有与没有并联缓冲电路时的开关波形,并说明并联缓冲电路的作用。6.过流保护性能测试结果,并对该过流保护电路作出评价。7.实验的收获、体会与改进意见。七、思考题1.试对由EXB840构成的驱动电路的优缺点作出评价。2.在选用二极管V1时,对其参数有何要求?其正向压降大小对IGBT的过流保护功能有何影响? 3.通过MOSFET与IGBT器件的实验,请您对两者在驱

22、动电路的要求,开关特性与开关频率,有 、无反并联寄生二极管,电流、电压容量以及使用中的注意事项等方面作一分析比较。深圳市学林电子有限公司产品的购买方式IGBT就是强电流、高压应用与快速终端设备用垂直功率MOSFET的自然进化。MOSFET由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET器件大幅度改进了RDS(on)特性,但就是在高电平时,功率导通损耗仍然要比IGBT 高出很多。IGBT较低的压降,转换成一个低VCE(sat)的

23、能力,以及IGBT的结构,与同一个标准双极器件相比,可支持更高电流密度,并简化 IGBT驱动器的原理图。1、IGBT的结构与工作原理图1所示为一个N 沟道增强型绝缘栅双极晶体管结构, N+ 区称为源区,附于其上的电极称为源极。N+ 区称为漏区。器件的控制区为栅区,附于其上的电极称为栅极。沟道在紧靠栅区边界形成。在漏、源之间的P 型区(包括P+ 与P 一区)(沟道在该区域形成),称为亚沟道区( Subchannel region )。而在漏区另一侧的P+ 区称为漏注入区( Drain injector ),它就是IGBT 特有的功能区,与漏区与亚沟道区一起形成PNP 双极晶体管,起发射极的作用,

24、向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极。IGBT 的开关作用就是通过加正向栅极电压形成沟道,给PNP 晶体管提供基极电流,使IGBT 导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT 关断。IGBT 的驱动方法与MOSFET 基本相同,只需控制输入极N一沟道MOSFET ,所以具有高输入阻抗特性。当MOSFET 的沟道形成后,从P+ 基极注入到N 一层的空穴(少子),对N 一层进行电导调制,减小N 一层的电阻,使IGBT 在高电压时,也具有低的通态电压。2、IGBT 的工作特性1、静态特性IGBT 的静态特性主要有伏安特性、转移特性与开

25、关特性。IGBT 的伏安特性就是指以栅源电压Ugs 为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs 的控制,Ugs 越高, Id 越大。它与GTR 的输出特性相似.也可分为饱与区1 、放大区2 与击穿特性3 部分。在截止状态下的IGBT ,正向电压由J2 结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT 的某些应用范围。IGBT 的转移特性就是指输出漏极电流Id 与栅源电压Ugs 之间的关系曲线。它与MOSFET 的转移特性相同,当栅源电压小于开启电压Ugs(t

26、h) 时,IGBT 处于关断状态。在IGBT 导通后的大部分漏极电流范围内, Id 与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。IGBT 的开关特性就是指漏极电流与漏源电压之间的关系。IGBT 处于导通态时,由于它的PNP 晶体管为宽基区晶体管,所以其B 值极低。尽管等效电路为达林顿结构,但流过MOSFET 的电流成为IGBT 总电流的主要部分。此时,通态电压Uds(on) 可用下式表示:Uds(on) Uj1 Udr IdRoh式中Uj1 JI 结的正向电压,其值为0、7 1V ;Udr 扩展电阻Rdr 上的压降;Roh 沟道电阻。通态电流Ids 可用下式

27、表示:Ids=(1+Bpnp)Imos式中Imos 流过MOSFET 的电流。由于N+ 区存在电导调制效应,所以IGBT 的通态压降小,耐压1000V的IGBT 通态压降为2 3V 。IGBT 处于断态时,只有很小的泄漏电流存在。2、动态特性IGBT 在开通过程中,大部分时间就是作为MOSFET 来运行的,只就是在漏源电压Uds 下降过程后期, PNP 晶体管由放大区至饱与,又增加了一段延迟时间。td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间ton 即为td (on) tri 之与。漏源电压的下降时间由tfe1 与tfe2 组成。IGBT的触发与关断

28、要求给其栅极与基极之间加上正向电压与负向电压,栅极电压可由不同的驱动电路产生。当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求与电源的情况。因为IGBT栅极- 发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。IGBT的开关速度低于MOSFET,但明显高于GTR。IGBT在关断时不需要负栅压来减少关断时间,但关断时间随栅极与发射极并联电阻的增加而增加。IGBT的开启电压约34V,与MOSFET相当。IGBT导通时的饱与压降比MOSFET

29、低而与GTR接近,饱与压降随栅极电压的增加而降低。正式商用的高压大电流IGBT器件至今尚未出现,其电压与电流容量还很有限,远远不能满足电力电子应用技术发展的需求,特别就是在高压领域的许多应用中,要求器件的电压等级达到10KV以上。目前只能通过IGBT高压串联等技术来实现高压应用。国外的一些厂家如瑞士ABB公司采用软穿通原则研制出了8KV的IGBT器件,德国的EUPEC生产的6500V/600A高压大功率IGBT器件已经获得实际应用,日本东芝也已涉足该领域。与此同时,各大半导体生产厂商不断开发IGBT的高耐压、大电流、高速、低饱与压降、高可靠性、低成本技术,主要采用1m以下制作工艺,研制开发取得

30、一些新进展。3、IGBT的工作原理N沟型的 IGBT工作就是通过栅极发射极间加阀值电压VTH以上的(正)电压,在栅极电极正下方的p层上形成反型层(沟道),开始从发射极电极下的n-层注入电子。该电子为p+n-p晶体管的少数载流子,从集电极衬底p+层开始流入空穴,进行电导率调制(双极工作),所以可以降低集电极发射极间饱与电压。工作时的等效电路如图1(b)所示,IGBT的符号如图1(c)所示。在发射极电极侧形成n+pn寄生晶体管。若n+pn寄生晶体管工作,又变成p+n pn+晶闸管。电流继续流动,直到输出侧停止供给电流。通过输出信号已不能进行控制。一般将这种状态称为闭锁状态。为了抑制n+pn-寄生晶体管的工作IGBT采用尽量缩小p+n-p晶体管的电流放大系数作为解决闭锁的措施。具体地来说,p+

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1