1、人教版八年级数学上册 第12章 全等三角形中的动点问题练习题无答案全等三角形中的动点问题教学重点难点 利用熟悉的知识点解决陌生的问题思路:1.利用图形想到三角形全等 2.分析题目,了解有几个动点,动点的路程,速度 3.结合图形和题目,得出已知或能间接求出的数据 4.分情况讨论,把每种可能情况列出来,不要漏 5.动点一般都是压轴题,步骤不重要,重要的是思路 6.动点类问题一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论.【典型例题】例1. 如图1,在ABC中,ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正
2、方形ADEF解答下列问题:(1)如果AB=AC,BAC=90,点D在射线BC上运动时(与点B不重合),如图,线段CF,BD之间的位置关系为_,数量关系为_请利用图2或图3予以证明(选择一个即可)例2. 如图,在等腰RtABC中,ACB=90,AC=CB,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE,连接DE、DF、EF.(1)求证:ADFCEF.(2)试证明DFE是等腰直角三角形.(3)在此运动变化的过程中,四边形CDFE的面积是否保持不变?试说明理由(4)求CDE面积的最大值变式 如图,在等腰RtABC中,C=90,AC=8,F是AB边上的中点,点D、
3、E分别在AC、BC边上运动,且保持AD=CE连接DE、DF、EF在此运动变化的过程中,下列结论:DFE是等腰直角三角形;DE长度的最小值为4;四边形CDFE的面积保持不变;CDE面积的最大值为8其中正确的结论是()A B C D例3. 正方形ABCD和正方形AEFG有一公共点A,点GE分别在线段AD、AB上(如图(1)所示),连接DF、BF(1)求证:DF=BF(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想例4.如图,已知ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点
4、.(1)如果点P在线段BC上以3cm/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD与CQP是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD与CQP全等?(2)若点Q以中的速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次在ABC的哪条边上相遇?变式 如图,在等边ABC中,AB=9cm,点P从点C出发沿CB边向点B点以2cm/s的速度移动,点Q点从B点出发沿BA边向A点以5cm/s速度移动P、Q两点同时出发,它
5、们移动的时间为t秒钟(1)你能用t表示BP和BQ的长度吗?请你表示出来(2)请问几秒钟后,PBQ为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿ABC三边运动,请问经过几秒钟后点P与点Q第一次在ABC的哪条边上相遇?【拓展提高】1.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DCBE2.如图,在RtABC中,BAC=90,AC=2AB,点D是AC的中点,将一块锐角为45的直角三角板如图放置,使三角板斜边的两
6、个端点分别与A、D重合,连结BE、EC试猜想线段BE和EC的数量及位置关系,并证明你的猜想3. 已知RtABC中,AC=BC,C=90,D为AB边的中点,EDF=90,EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当EDF绕D点旋转到DEAC于E时(如图1),易证当EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,SDEF、SCEF、SABC又有怎样的数量关系?请写出你的猜想,不需证明4. 如图,AC为正方形ABCD的一条对角线,点E为DA边延长线上的一点,连接BE,在BE上取一点F,使BF=BC,过点B做B
7、KBE与B,交AC于点K,连接CF,交AB于点H,交BK于点G.(1)求证:BH=BG;(2)求证:BE=BG+AE.5.正方形四条边都相等,四个角都是90如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG(1)如图1,当点E在线段BC上(不与点B、C重合)时:判断ADG与ABE是否全等,并说明理由;过点F作FHMN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:判断ADG与ABE是否全等,不需说明理由;过点F作FHMN,垂足为点H,已知GD=4,求C
8、FH的面积6.如图1,若ABC和ADE为等边三角形,M、N分别为EB、CD的中点,易证:CD=BE,AMN是等边三角形.(1)当把ADE绕点A旋转到图2的位置时,CD=BE是否依然成立?若成立请证明,若不成立请说明理由;(2)当ADE绕点A旋转到图3位置时,AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,ADE与ABC及AMN的面积之比;若不是,请说明理由.7.在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧做ADE,使AD=AE,DAE=BAC,连接CE.(1)如图1,当点D在线段BC上,如果BAC=90,则BCE=_度;(2)设B
9、AC=,BCE=.如图2,当点D在线段BC上移动,则,之间有怎样的数量关系?请说明理由;当点D在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论. 8.思考与推理 如图,在四边形ABCD中,AB=AD=6cm,CB=CD,ABBC,CDAD,BCD=120. PCQ=60,两边分别交线段AB、AD于点P、Q,把PBC绕点C顺时针旋转120得到MDC.请在图中找出一对全等的三角形并加以证明(PBC与MDC除外).探究与应用 在上边的条件下,若PCQ绕顶点C在BCD内转动,两边始终与线段AB、AD相较于点P、Q,试探究在转动过程中APQ的周长是否变化,若不变,求它的周长;若变化,请说明
10、理由.9. 问题情境:如图1,在直角三角形ABC中,BAC=90,ADBC于点D,可知:BAD=C(不需要证明);特例探究:如图2,MAN=90,射线AE在这个角的内部,点B、C在MAN的边AM、AN上,且AB=AC,CFAE于点F,BDAE于点D证明:ABDCAF;归纳证明:如图3,点B,C在MAN的边AM、AN上,点E,F在MAN内部的射线AD上,1、2分别是ABE、CAF的外角已知AB=AC,1=2=BAC求证:ABECAF;拓展应用:如图4,在ABC中,AB=AC,ABBC点D在边BC上,CD=2BD,点E、F在线段AD上,1=2=BAC若ABC的面积为15,则ACF与BDE的面积之和
11、为_.10. 如图,已知ABC是等腰直角三角形,BAC=90,BC=2,AD是BC边上的高作正方形DEFG,使点A、C分别在DG和DE上,且DE=BC,且连接AE、BG(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0,或小于90),DG、DE分别交AB、AC于点M和N(如图),则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由11. 如下图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上
12、由C点向D点运动若点Q的运动速度与点P的运动速度相等,经过1秒后,BPE与CQP是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPE与CQP全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?12.(1)操作发现:如图,D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论(2)类比猜想:如图,当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:如图,当动点D在等边ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF,连接AF、BF,探究AF、BF与AB有何数量关系?并证明你探究的结论如图,当动点D在等边三角形边BA的延长线上运动时,其他作法与图相同,中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1