ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:26.23KB ,
资源ID:7703595      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7703595.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(IntegratedCircuits集成电路电子信息类专业英语计算机类专业英语文章.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

IntegratedCircuits集成电路电子信息类专业英语计算机类专业英语文章.docx

1、IntegratedCircuits集成电路电子信息类专业英语计算机类专业英语文章 集成电路集成电路数字逻辑和电子电路由称为晶体管的电子开关得到它们的(各种)功能。粗略地说,晶体管好似一种电子控制阀,由此加在阀一端的能量可以使能量在另外两个连接端之间流动。通过多个晶体管的组合就可以构成数字逻辑模块,如与门和触发电路等。而晶体管是由半导体构成的。查阅大学化学书中的元素周期表,你会查到半导体是介于金属与非金属之间的一类元素。它们之所以被叫做半导体是由于它们表现出来的性质类似于金属和非金属。可使半导体像金属那样导电,或者像非金属那样绝缘。通过半导体和少量其它元素的混合可以精确地控制这些不同的电特性,

2、这种混合技术称之为“半导体掺杂”。半导体通过掺杂可以包含更多的电子(N型)或更少的电子(P型)。常用的半导体是硅和锗,N型硅半导体掺入磷元素,而P型硅半导体掺入硼元素。不同掺杂的半导体层形成的三明治状夹层结构可以构成一个晶体管,最常见的两类晶体管是双极型晶体管(BJT)和场效应晶体管(FET),图2.1给出了它们的图示。图中给出了这些晶体管的硅结构,以及它们用于电路图中的符号。BJT是NPN晶体管,因为由NPN掺杂硅三层构成。当小电流注入基极时,可使较大的电流从集电极流向发射极。图示的FET是N沟道的场效应型晶体管,它由两块被P型基底分离的N型组成。将电压加在绝缘的栅极上时,可使电流由漏极流向

3、源极。它被叫做N沟道是因为栅极电压诱导基底上的N通道,使电流能在两个N区域之间流动。另一个基本的半导体结构是二极管,由N型和P型硅连接而成的结组成。二极管的作用就像一个单向阀门,由于电流只能从P流向N。可以构建一些特殊二极管,在加电压时可以发光,这些器件非常合适地被叫做发光二极管或LED。这种小灯泡数以百万计地被制造出来,有各种各样的应用,从电话机到交通灯。半导体材料上制作晶体管或二极管所形成的小芯片用塑料封装以防损伤和被外界污染。在这封装里一些短线连接半导体夹层和从封装内伸出的插脚以便与(使用该晶体管的)电路其余部分连接。一旦你有了一些分立的晶体管,直接用电线将这些器件连线在一起就可以构建数

4、字逻辑(电路)。电路会工作,但任何实质性的数字逻辑(电路)都将十分庞大,因为要在各种逻辑门中每实现一种都需要多个晶体管。1947年,John Bardeen、Walter Brattain和and William Shockley发明晶体管的时候。将多个晶体管组装在一个电路上的唯一方法就是购买多个分离的晶体管,将它们连在一起。1959年,Jack Kilby 和 Robert Noyce各自独立地发明了一种将多个晶体管做在同一片半导体材料上的方法。这个发明就是集成电路,或IC,是我们现代电脑化世界的基础。集成电路之所以被这样命名,是因为它将多个晶体管和二极管集成到同一块小的半导体芯片上。IC包

5、含按照形成电路所要求的拓扑结构连在一起的许多小元件,而无需再将分立元件的导线焊接起来。去除了塑料或陶瓷封装后,一个典型的集成电路就是每一边2mm至15mm的方形或矩形硅片。根据制造集成电路的技术水平的不同,在这种小片上可能有几十个到几百万个晶体管,电子器件这种令人惊异的密度表明那些晶体管以及连接它们线是极其微小的。集成电路的尺寸是以微米为单位测量的,1微米是1米的百万分之一。作为参照,一根人的头发其直径大约为100微米。一些现代集成电路包含的元件和连线,是以小到0.1微米的增量来测量的。每年研究人员和工程师都在寻找新的方法来不断减小这些元件的大小,以便在同样面积的硅片上集成更多的晶体管,如图2

6、.2所示。在集成电路的设计和制造过程中,常用两种主要晶体管技术是:双极和金属氧化物半导体(MOS)。双极工艺生产出来的是BJT(双极型晶体管),而MOS工艺生产出来的是FET(场效应晶体管)。在20世纪80年代以前更常用的集成电路是双极逻辑,但是此后MOS技术在数字逻辑集成电路中占据了大多数。N沟道FET是采用NMOS工艺生产的,而P沟道FET是采用PMOS工艺生产的。到了20世纪80年代,互补MOS即CMOS成为占主导地位的加工技术,并且延续至今。CMOS集成电路包含了NMOS和PMOS两种晶体管。专用集成电路(ASIC)专用集成电路(ASIC)是为了特殊应用而定制的集成电路,而不是通用的。

7、比如,一片仅被设计用于运行蜂窝式电话的芯片是专用集成电路(ASIC)。相比之下,7400与4000系列集成电路是可以用导线连接的逻辑构建模块,适用于各种不同的应用。随着逐年来特征尺寸的缩小和设计工具的改进,ASIC中的最大复杂度从5000个门电路增长到了1亿个门电路,因而功能也有极大的提高。现代ASIC常包含32位处理器,包括ROM、RAM、EEPROM、Flash等存储器,以及其它大规模组件。这样的ASIC经常被称为SoC(片上系统)。数字ASIC的设计者们使用硬件描述语言(HDL),比如Verilog或VHDL语言来描述ASIC的功能。现场可编程门阵列(FPGA)是7400系列和面包板的现

8、代版,它包括可编程逻辑块和可编程的模块之间的相互连接,使得相同的FPGA能够用于许多不同的场合。对于较小规模的设计或(与)小批量生产,FPGA可能比ASIC设计有更高的成本效率。不能循坏的工程费用(建立工厂生产特定ASIC的成本)可能会达到数十万美元。专用集成电路这一通用名词也包括FPGA,但是大多数设计者仅将ASIC用于非现场可编程的器件,将ASIC和FPGA两者区别开来。历史最初的ASIC使用门阵列技术。Ferranti在1980年左右制作了也许是第一片门阵列,ULA(自由逻辑阵列)。通过改变金属互相连接掩模产生了定制。ULA有多至几千个门电路的复杂度。之后的版本变得更通用,有适应用户的包

9、含金属和多层硅的不同基底,有些基底包括RAM单元。标准单元设计在20世纪80年代中期,一个设计者要选择一家ASIC制造商,并用制造商提供的设计工具完成他们的设计工作。尽管有第三方设计工具,但第三方设计工具和不同的ASIC制造商的布线以及实际半导体工艺过程的性能之间却缺乏有效的联系。大多数的设计者最终使用工厂特制的工具来完成他们的设计。解决这个问题的一个方法是实现标准元件,这一问题也带来了更高密度的器件。每个ASIC制造商都可创造他们自己的具有已知电性能的功能块,如传播延迟器、电容、电感,这些都可以用第三方工具来表示(实现)。标准单元设计就是利用这些功能块来实现很高的门密度以及良好的电性能。标准

10、单元设计使门阵列和全定制设计之间在一次性投入的工程费用和循环元件成本方面相互适应。直到80年代后期,逻辑综合工具,比如设计编译器,开始向广大设计者提供。这些工具能够将HDL描述语言编译成门级的网表。这就使得称作标准单元设计的设计方法成为可能。标准单元集成电路的设计过程在概念上需经过以下几个过程,但事实上在实际生产中这些工序都有较大的重叠。以工业界普通的熟练水平实现的这些步骤几乎总是产生能正确实现原设计的最终器件,除非后来在物理制造过程中引入了缺陷。设计工程师团队开始工作于对新的ASIC所要求功能的非正式理解,这通常来自于需求分析。*设计团队构建对ASIC芯片的描述并使用HDL语言实现这些目标。

11、这一过程可类比于用高级语言编写计算机程序。这一过程常被称为RTL(寄存器传送级)设计。*仿真验证目标的合适性。利用例如Virtutechs Simics工具,用软件构建的虚拟系统能以高达每秒数十亿条模拟指令的速度来模拟ASIC的功能。*逻辑综合工具,比如设计编译器,将RTL设计转换成称为标准单元的较低层结构的集合。这些构成的元素是从一个标准单元库中得到的,这个库由事先规定好的门电路集合构成,例如2输入或非门,2输入与非门,非门等等。有计划的ASIC制造商有其特定的标准单元。所产生的所有标准单元,加上连接他们所需要的导线称为门级网表。*接着,门级网表由布局工具进行处理,将标准单元布局在代表最终A

12、SIC的区域。努力寻找一种标准单元的布局服从各种规定的约束。有时,先进的技术比如模拟退火被用来优化布局。*路由工具获取标准单元的物理布局,并利用网表来创建它们之间的电连接。由于搜索空间很大,该过程将产生满足充分条件的解,而不是全局最优解。这个过程的输出是一套光掩模使半导体制造产生实物的IC。*接下来是对最终延时、寄生电阻和电容以及能量消耗的周全的评估。对于数字电路,这将被进一步对应为延迟信息,这些评估将用于最后一轮的测试。这一测试表明器件将在所有极端的过程、电压、温度下正常工作。当这项测试完成时,光掩模信息将被公布用于芯片制造。这些设计步骤(或流程)对于标准产品设计同样适用。重要的差别在于标准

13、单元设计使用制造商的单元库,这些库已用于数以百计的其它设计实现,因而比起全定制设计来风险小得多。门阵列设计门阵列设计是一种制造方法,事先定义好扩散层(晶体管和其它有源器件),包含这些器件的晶片在金属化之前被库存,就是说先不进行联接。然后在物理设计过程中定义最终设计的连接。对设计者来说重要的是,ASIC相比在市场上可提供的FPGA解决方案,能达到最小的传播延时。门阵列ASIC是一种折中方案,因为将某一给定的设计与制造商库存的晶片相对应总是不可能达到100%利用率的。现在电路设计者已经很少采用纯粹的逻辑门阵列设计,而几乎都代之以FPGA之类的现场可编程器件了。这些器件可由用户编程,使工具作业费用最

14、低,以略为提高的零件价格获得可比的性能。现在门阵列正在发展为结构化ASIC,其中包含很大的IP内核,如处理器、DSP单元、外围设备、标准接口、集成SRAM存储器、以及一组可重新设置的未确定功能的逻辑单元。这种转变很大程度上是因为ASIC器件能够集成大量的系统功能模块,以及片上系统所要求的(功能)比仅仅逻辑单元多得多。全定制设计全定制设计的优点通常包括减小的面积,性能的改进,以及能集成模拟元件和其它预先设计的元件比如构成片上系统的微处理器核。缺点包括增加的制造和设计时间,增加的不可循环工程成本,更复杂的CAD系统,和对设计团队熟练程度高得多的要求。但对于纯数字设计来说,“标准单元”库与现代CAD

15、系统一起,可以低风险提供相当大的性能/价格优势。自动布局工具使用起来快速且简单,也提供了对设计的性能限制进行人工优化的可能性。结构化设计结构化ASIC设计是一个不明确的表达,在不同的上下文中有不同的意义。在工业界这是一个相对新的术语,这也是为什么在它的定义上有一些不同。不过结构化ASIC的基本前提是,由于有事先定义的金属层和事先规定了硅片上包含的内容,制造周期和设计周期相对于基于单元的ASIC都有所减少。一种定义是这样的:在结构化ASIC设计中,器件的逻辑掩模层是被ASCI供应商(有些情况下由第三方)预先定义的。结构化ASCI可以被看成是在现场可编程门阵列与“标准单元”ASCI设计之间建立联系

16、。使得结构化ASCI与门阵列不同的是,在门阵列中,预先定义的金属层是为能更快地制造转向而服务的。而在结构化ASIC中预先定义的金属化主要是降低掩模的成本,并被用于使设计周期明显缩短。同样的,为结构化ASCI所使用的设计工具可以大大降低成本,并比基于单元的工具更容易使用,因为这些工具不必像基于单元的工具那样执行所有的功能。关于结构化ASIC的另一个重要方面是,它使对于某些应用共同的IP成为内在的,而不是设计在内的。通过直接将IP植入结构中,相比将IP设计在基于单元的ASIC中,设计者又能节省时间和花费。Integrated Circuits(集成电路)英文原稿:The Integrated Ci

17、rcuit Digital logic and electronic circuits derive their functionality from electronic switches called transistor. Roughly speaking, the transistor can be likened to an electronically controlled valve whereby energy applied to one connection of the valve enables energy to flow between two other conn

18、ections.By combining multiple transistors, digital logic building blocks such as AND gates and flip-flops are formed. Transistors, in turn, are made from semiconductors. Consult a periodic table of elements in a college chemistry textbook, and you will locate semiconductors as a group of elements se

19、parating the metals and nonmetals.They are called semiconductors because of their ability to behave as both metals and nonmetals. A semiconductor can be made to conduct electricity like a metal or to insulate as a nonmetal does. These differing electrical properties can be accurately controlled by m

20、ixing the semiconductor with small amounts of other elements. This mixing is called doping. A semiconductor can be doped to contain more electrons (N-type) or fewer electrons (P-type). Examples of commonly used semiconductors are silicon and germanium. Phosphorous and boron are two elements that are

21、 used to dope N-type and P-type silicon, respectively. A transistor is constructed by creating a sandwich of differently doped semiconductor layers. The two most common types of transistors, the bipolar-junction transistor (BJT) and the field-effect transistor (FET) are schematically illustrated in

22、Figure 2.1.This figure shows both the silicon structures of these elements and their graphical symbolic representation as would be seen in a circuit diagram. The BJT shown is an NPN transistor, because it is composed of a sandwich of N-P-N doped silicon. When a small current is injected into the bas

23、e terminal, a larger current is enabled to flow from the collector to the emitter.The FET shown is an N-channel FET, which is composed of two N-type regions separated by a P-type substrate. When a voltage is applied to the insulated gate terminal, a current is enabled to flow from the drain to the s

24、ource. It is called N-channel, because the gate voltage induces an N-channel within the substrate, enabling current to flow between the N-regions. Another basic semiconductor structure is a diode, which is formed simply by a junction of N-type and P-type silicon. Diodes act like one-way valves by co

25、nducting current only from P to N. Special diodes can be created that emit light when a voltage is applied. Appropriately enough, these components are called light emitting diodes, or LEDs. These small lights are manufactured by the millions and are found in diverse applications from telephones to t

26、raffic lights. The resulting small chip of semiconductor material on which a transistor or diode is fabricated can be encased in a small plastic package for protection against damage and contamination from the outside world.Small wires are connected within this package between the semiconductor sand

27、wich and pins that protrude from the package to make electrical contact with other parts of the intended circuit. Once you have several discrete transistors, digital logic can be built by directly wiring these components together. The circuit will function, but any substantial amount of digital logi

28、c will be very bulky, because several transistors are required to implement each of the various types of logic gates. At the time of the invention of the transistor in 1947 by John Bardeen, Walter Brattain, and William Shockley, the only way to assemble multiple transistors into a single circuit was

29、 to buy separate discrete transistors and wire them together. In 1959, Jack Kilby and Robert Noyce independently invented a means of fabricating multiple transistors on a single slab of semiconductor material. Their invention would come to be known as the integrated circuit, or IC, which is the foun

30、dation of our modern computerized world. An IC is so called because it integrates multiple transistors and diodes onto the same small semiconductor chip. Instead of having to solder individual wires between discrete components, an IC contains many small components that are already wired together in

31、the desired topology to form a circuit. A typical IC, without its plastic or ceramic package, is a square or rectangular silicon die measuring from 2 to 15 mm on an edge. Depending on the level of technology used to manufacture the IC, there may be anywhere from a dozen to tens of millions of indivi

32、dual transistors on this small chip. This amazing density of electronic components indicates that the transistors and the wires that connect them are extremely small in size. Dimensions on an IC are measured in units of micrometers, with one micrometer (1mm) being one millionth of a meter. To serve as a reference point, a human hair is roughly 100mm in diameter. Some modern ICs contain components and wires that are measured in increments as small as 0.1mm! Each year, researchers and engineers have been finding new ways to steadily reduce these feature sizes to pack more transistors into the s

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1