ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:161.17KB ,
资源ID:7578551      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7578551.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(非晶硅晶体硅HIT太阳电池研究.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

非晶硅晶体硅HIT太阳电池研究.docx

1、非晶硅晶体硅HIT太阳电池研究 非晶硅/晶体硅HIT太阳电池研究摘 要:运用AMPS程序模拟计算了p-型非晶硅/n-型晶体硅HIT(Heterojunction with Intrinsic Thin layer) 异质结太阳电池的光伏特性。通过对不同带边补偿情况下的计算结果同文献报道相比较,得出导带补偿小部分(0.18eV),价带补偿大部分(0.5eV)的基本结论。同时还证实,界面态是决定电池性能的关键因素,显著影响电池的开路电压(VOC)和填充因子(FF)。最后计算了这种电池理想情况下(无界面态、有背面场、正背面反射率分别为0和1)的理论效率Eff=27% (AM1.5 100MW/cm2

2、 0.40-1.10m波段)。关键词:a-Si:H/c-Si异质结,太阳电池,计算机模拟1 前言晶体硅太阳电池具有转换效率高,生产技术成熟的优点,一直以来占据太阳电池世界总产量的绝大部分1。但传统晶体硅太阳电池生产中的高温(9000C以上)扩散制结工艺又限制了生产效率的提高和产品成本的进一步降低。多年来各国科学家一直在努力研究探索低成本高产量的高效薄膜太阳电池制造技术2。氢化非晶硅(a-Si:H)太阳电池生产工艺温度较低(4000C以下),便于大规模生产,因此受到各国科学家的普遍重视并得到迅速发展3。但是,氢化非晶硅(a-Si:H)太阳电池的光致退化(Staebler-Wronski 效应)问

3、题始终没有得到很好的解决,同时其光电转换效率还有待进一步提高。一条可行的途径是用宽带隙的a-Si作为窗口层或发射极,单晶硅、多晶硅片作衬底,形成所谓的异质结太阳电池 4,5。这种电池既利用了薄膜制造工艺优势同时又发挥了晶体硅和非晶硅的材料性能特点,具有实现高效低成本硅太阳电池的发展前景。本文运用AMPS-1D6计算机模拟程序分析模拟了这种结构,并就相关物理问题作了初步探讨。2 物理模型模拟分析的太阳电池材料和结构参数见表-1。衬底为250微米厚的n-型晶体硅(掺杂浓度为1.41016cm-3),n+层(掺杂浓度为2.51020cm-3)厚度为100nm。p-型非晶硅厚度为10nm(掺杂浓度为1

4、.01019cm-3)。表-1 模拟计算中所用参数Tabl-1 Parameters for calculation参数p-a-Si:H i-a-Si:Hc-Si厚度(nm)电子亲合势(eV)迁移率带隙(eV)光学带隙(eV)相对介电常数有效态密度NC,NV(cm-3eV-1)电子迁移率n空穴迁移率p带尾态密度Urbach尾宽 电子俘获截面空穴俘获截面隙间定域态分布电子俘获截面空穴俘获截面掺杂浓度103.454.001.801.7211.902.510202.5102010(cm2V-1s-1)0.8(cm2V-1s-1)1021cm-3eV-10.05(ED)/0.03 (EA)eV110-

5、17cm-2110-15 cm-29.51018双高斯分布110-15 cm-2110-14 cm-2NA=11019cm-301003.454.001.801.7211.902.510202.5102010(cm2V-1s-1)0.8(cm2V-1s-1)1021cm-3eV-10.05(ED)/0.03(EA)eV110-17 cm-2110-15 cm-251016双高斯分布110-15 cm-2110-14 cm-22500004.051.121.1211.902.810191.0410191350(cm2V-1s-1)450(cm2V-1s-1)1014cm-3eV-10.01(ED

6、)/0.01(EA)eV110-17 cm-2110-15 cm-211012平均分布110-15 cm-2110-14 cm-2ND=1.41016cm-3非晶硅和晶体硅的吸收系数如图-1所示,分别取自有关参考文献7,8。图-1 计算所用非晶硅和晶体硅的吸收系数Fig. 1 Absorption coefficients of a-Si and c-Si used for calculation计算中,除理论最大效率计算之外,正背面反射率分别为0.1和0,无陷光结构。顶电极界面(也就是p-型非晶硅一侧的电极界面)和底电极界面(也就是n-型晶体硅一侧的电极界面)的电子空穴界面复合速率均为110

7、7cm/s,接触势垒分别为0.26eV(顶电极)和0.1eV(底电极)。3模拟分析与讨论3.1界面态对光伏特性的影响众所周知,影响异质结器件光电特性的核心问题除了能带不连续性以外,还有界面缺陷电子态。 通过在a-Si:H和c-Si之间引入一层 “界面层”,厚度为1nm(约4个原子层),悬键态体密度在1015-1019cm-3之间(由此可推算出界面态面密度Nint为109-1013cm-2之间),在带隙(1.12eV)中呈双Gaussian分布,电子空穴俘获截面分别为110-14cm2、110-15cm2(类施主态)和110-15cm2、110-14cm2(类受主态)。图2为计算所得不同界面态密

8、度情况下,p-a-Si:H/n-c-Si太阳电池在AM1.5,100mW/cm2模拟光照条件下的光伏特性的影响。可以看出,界面态对光伏特性的影响很大,尤其是填充因子(FF)和开路电压(VOC)。在不考虑界面态时,电池效率和填充因子分别高达24%和83.2%(无陷光结构)。随着界面态密度的增加,除短路电流以外,电池性能急剧下降,界面态密度为51013cm-2时,电池效率和填充因子分别下降为9%和0.65,开路电压却只有0.4V。这主要是由于界面缺陷态引起耗尽区的产生复合电流增加,表现为反向漏电电流增大,从图3看出,反向漏电电流随界面态密度增加而增加,而且当界面态密度从51012m-2变为5101

9、3m-2时,反向漏电电流增长近三个数量级。根据太阳电池的理想二极管模型,开路电压与反向饱和电流J0之间的关系为 (1)图2不同界面态密度对太阳电池光伏特性的影响Fig. 2 Impact of interfacial states density on photovoltaic performances of solar cells图3不同界面态密度太阳电池的反向暗电流Fig. 3 Different reverse current densities with different interfacial states density在不变时,J0的增大,VOC减小。填充因子FF与J0间在串联

10、电阻可以忽略的情况下也存在类似的关系式9: (2)因此,VOC和FF的减小,必然导致太阳电池效率的下降。3.2分析能带补偿(Band-gap Offset)的影响。异质结的能带图取决于材料对的电子亲合势、禁带宽度、导电类型、掺杂浓度以及界面态密度等多种因素。这给异质结带来了多样性,我们也因此不能像对待同质结那样,简单地由结两边费米能级的位置就能推断出能带图的主要特征。原因是界面处材料的电子亲合势不同,能带不再连续,同时界面态对结两边费米能级也有影响。根据电子亲合势的定义,我们可以得到: (3) (4)为nc-Si:H(a-Si:H)和c-Si的电子亲合势之差,Ec为nc-Si:H(a-Si:H

11、)和c-Si的带隙差。虽然有不少作者报道过非晶硅电子亲合势的测量结果,但由于非晶硅、纳米硅薄膜的结构复杂性和多样性,使得这类参数具有一定程度的不确定性。而晶体硅参数相对比较确定,因此我们通过改变非晶硅电子亲合势来模拟能带补偿对器件光伏特性的影响。Ec在0.05-0.60eV之间变化(晶体硅的电子亲合势为4.05eV)。图4给出了Ec为0.10eV和0.30eV的热平衡条件下的能带图。图4 不同能带补偿情况下的能带图Fig. 5 Band compensation under different energy band diagram平衡条件下,异质结两边空间电荷区内自建电势Vb可分别表示为:

12、(5) (6)式中q为电子电荷,N为掺杂浓度,x 为空间电荷区厚度,为介电常数,下标n表示纳米硅、非晶硅一侧,c表示晶体硅一侧。两边空间电荷区受电中性条件的约束,xn ND =xc NA,因而有 (7)即两边的自建势反比于掺杂浓度和介电常数的乘积,低掺杂的晶体硅一侧自建势较高,空间电荷区也更厚。图4中可以看出,晶体硅一侧耗尽区较宽(近150nm),能带弯曲或自建势主要在晶体硅一侧。值得指出的是,由于异质结处存在能带不连续性,结区总的势垒高度并不等于空间电荷区自建电势之和。电流过程还应受到能带突变量,即能带补偿的影响。图5 能带补偿对太阳电池性能的影响,图(a)、(b)中实线分别表示不同界面密度

13、情况下短路电流Jsc和填充因子FF,虚线则分别表示开路电压和转换效率。Fig. 5 With compensation of solar cells can influence, Figure (a), (b) solid line, respectively, under different interface circuit current density Jsc and fill factor FF, open circuit voltage, respectively, while dotted lines and conversion efficiency.图5为计算所得光伏特性随能

14、带补偿的变化曲线,可以看出,短路电流几乎不受能带补偿的影响,而开路电压和填充因子以及光电转换效率具有类似的变化规律。随着Ec的增大,由于界面态所带来的开路电压和填充因子的减小逐渐被消除,当Ec达到0.5eV左右时界面态的影响几乎完全被掩盖。电池参数又恢复到无界面态时的值(-19%,Voc-0.68V,FF0.84)。随着Ec的增大,在晶体硅一侧的模拟界面层内的费米能级由于能带弯曲而上升。当Ec增大到0.4-0.5eV时,费米能级上升到远离禁带中心接近导带底部,界面态几乎全部饱和,使得通过界面态的产生复合漏电电流下降,从而使光电转换效率、开路电压和填充因子从新得以恢复提高。我们还对理想情况(即不

15、考虑界面态)在不同的能带补偿情况下进行了模拟计算,发现能带补偿对理想情况时短路电流、开路电压和填充因子均无影响,说明能带补偿是通过界面态来对器件产生影响的。关于nc-Si:H/c-Si异质结的能带补偿,目前还未见有文献报道。关于(a-Si:H) /c-Si异质结的能带不连续性,我们特别进行了数值模拟,模拟结果支持带隙差主要补偿在价带的观点。 3.3本征非晶硅层厚度的影响在n+-a-Si:H/c-Si pn结中插入本征非晶层有助于电池性能的提高,Tanaka 小图6本征缓冲层厚度对太阳电池性能的影响Fig. 6 Intrinsic buffer layer thickness on solar

16、cell performance(a)、(b)中实线分别表示不同界面密度情况下短路电流Jsc和填充因子 FF,虚线则分别表示开路电压和转换效率。组正是采用这种结构获得了18.1%的光电转换效率,也正是因为这层薄的非晶硅本征层,并把这种电池命名为HIT(Heterojunction with Intrinsic Thin-layer)太阳电池。图6是计算得到的不同界面态密度情况下电池光伏特性随本征非晶硅缓冲层厚度的变化。填充因子和开路电压的变化趋势与界面态密度有关,当界面态密度在小于1011cm-2时,二者都存在极大值以及相应的优化厚度(30-40nm),这一结果和Tanaka和Anderson

17、等人的实验结果定性吻合。而当界面态密度达到1012cm-2量级时,非晶硅本征层的引入只能使电池性能变坏。因此,我们可以推断,通过适当引入钝化工艺,如氢稀释等离子体硅烷分解或适量掺入卤族元素(如F)等手段可以使nc-Si:H:F/c-Si界面的缺陷态密度降到低于1011cm-2的数量级。优化厚度的存在说明有相反过程在起作用,一方面开路电压随本征非晶硅厚度增加而提高,而另一方面短路电流却随缓冲层厚度的增加而单调下降。这是由于非晶硅层的短波吸收增加,而相应的光生载流子又得不到有效的收集(非晶硅的载流子迁移率相比晶体硅较低),从而使短路电流下降。图7 本征缓冲层厚度对太阳电池短波响应的影响Fig. 7

18、 Intrinsic buffer layer thickness on the response of solar short-wave图7是不同缓冲层厚度情况下电池的光谱响应曲线。当缓冲层的厚度增加时,电池的短波响应变差。3.4 理论极限效率的计算以上计算都是在没有陷光结构的情况下进行的,因此效率只能达到24%。而我们知道晶体硅pn结电池的理论效率高达29%(AM1.5,100MW/cm2),实际已作到了24.5%10。那么p-a-Si:H /n-c-Si电池又能达到多高的效率呢?在一定光照条件下,要提高效率,唯一的途径是提高量子效率,增加光吸收。一方面采用绒面结构或减反射膜以减少正表面的

19、反射损失到最低限度,或增加电池厚度以减少硅的长波低吸收区的透射损失。然而电池厚度的增加势必又会带来光生载流子收集效率的下降,同时还会增加成本,常用的办法是在背面设置光反射器,将透射光反射回来再次吸收,提高光生电流从而提高光电转换效率。图8理想情况下p-a-Si:H/n-c-Si 的伏安特性曲线Fig. 8 Calculated J-V curve for ideal case图8为计算所得的J-V曲线(无界面态、有背面场、正背面反射率分别为0和1),最大理论效率Effmax=27%(AM1.5 100MW/cm2 0.38-1.10m波段) 4 结论与建议4.1 结论通过数值模拟计算,并同已有

20、实验结果比较,得出了a-Si/c-Si异质结界面的能带补偿大部分在价带(约0.5eV),少量在导带(约0.2eV)的结论。在HIT结构中随着本征层厚度的增加,电池的短路电流急剧下降。这是由于具有高吸收系数的a-Si本征层吸收了更多的短波光子,而由此产生的光生载流子又不能被很好收集的缘故。界面态显著影响a-Si/c-Si异质结太阳电池的光伏特性。随着界面态密度的增加,电池的开路电压、填充因子及转换效率明显降低。原因是通过界面态的产生复合过程引起漏电电流的增加,从而降低了开路电压和填充因子。计算表明这种电池理想情况下(无界面态、有背面场、正背面反射率分别为0和1)的理论极限效率Eff=27% (A

21、M1.5 100MW/cm2 0.40-1.10m波段)。4.2 建议HIT太阳电池虽然诞生的时间不长,但是凭借其廉价高效的巨大优势迅速抢占国际光伏市场,成为目前太阳电池研发及应用领域中最耀眼的一颗新星。随着人们对HIT异质结技术研究的不断深入以及HIT太阳电池制备技术的不断改进,由HIT太阳电池主导国际光伏市场的日期已离我们越来越近了。从中也可以看出,发展使用新原理、新结构及新材料的太阳电池对于推动光伏技术的向前发展显得何等地重要。参考文献1 J.E. Rannels et al., Implementation and financing for President Clintons mi

22、llion solar roofs initiativeC Proc. of the 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, 1998,3292-3300 2 K.Yamamoto et al. Cost effective and high-performance thin film Si solar cell towards the 21st century J,Solar Energy Material & Solar Cells, 66,2001, 117-1253 J.Yang et

23、al., Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13% stable conversion efficiencies J, Phys. Lett. 70, 1997,29754 B. Jagannathan et al., Amorphous silicon/p-type crystalline silicon heterojunction solar cells J Solar Energy Material & Solar Cells 46, 1997,289-3105Y.J.So

24、ng,AndersonWA,Amorphous silicon/p-type crystalline silicon heterojunction with a microcrystalline silicon buffer layer J Solar Energy Material & Solar Cells, 64, 2000,241-2496 胡志华,廖显伯,曾湘波等,纳米硅/晶体硅异质结太阳电池数值模拟分析J,物理学报,52卷,2003年第1期,217-2247 Yoshinori Yukimoto, Amorphous Semiconductor Technologies & Dev

25、icesC(1983) ed. by Y. Hamakawa, JARECT Vol.6, 2288 William C. OMara, et al., Handbook of Semiconductor Silicon Technology M, Noyes Publications, U.S.A, 409-6399 Fahrenbruch A L, Bube R H 1983 Fundamentals of Solar CellsM Published by Academic Press, 210-22010 J. Zhao, A. Wang, P. Altermatt and M. A.

26、 Green, Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss J, Appl. Phys. Lett. 66 ,1995, 3636-3638The study of solar cells HIT of amorphous silicon/ crystalline siliconAbstract: AMPS simulator, which was developed by Pennsylvania

27、State University, has been used to simulate photovoltaic performances of a-Si:H/ c-Si HIT (H Heterojunction with Intrinsic Thin layer) solar cells. It is concluded that the bandgap difference among a-Si and c-Si is largely compensated at valence band (about 0.5eV) with a small conduction band edge o

28、ffset (about 0.2eV) after comparing the calculated results to reported data. It is shown that interface states are essential factors prominently influencing open circuit voltages (VOC) and fill factors (FF) of these structured solar cells. Theoretical maximum efficiency of up to 27%(AM1.5 100mW/cm2 0.401.1m) has been obtained with BSF structure, idealized light-trapping effect(RF=0 , RB=1) and no interface states.Key words: a-Si:H/c-Si hetero-junction, solar cell, computer simulation

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1