1、春九年级数学中考一轮复习一元二次方程自主复习达标测评2021年春九年级数学中考一轮复习一元二次方程自主复习达标测评(附答案)1已知实数x满足(x22x+1)2+4(x22x+1)50,那么x22x+1的值为()A5或1 B1或5 C1 D52已知(x2+y2+2)(x2+y2+4)15,则x2+y2的值为()A7或1 B1 C7 D7或13如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使草坪的面积为540平方米,则设道路的宽为xm,根据题意,列方程()A322020x30x540 B322020x30xx2540 C(32x)(20x)540
2、D322020x30x+2x25404关于x的方程a(x+m)2+b0的解是x12,x21(a,m,b均为常数,a0),则方程a(xm+1)2+b0的解是()A1和0 B3和2 C3和0 D1和25等腰三角形的底边长为6,腰长是方程x28x+150的一个根,则该等腰三角形的周长为()A12 B16 C12或16 D156如图,在ABC中,ABC90,AB8cm,BC6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使PBQ的面积为15cm2,则点P运动的时间是()A2s B3s C4s
3、D5s7若a是方程x2x10的一个根,则2a2+2a+2020的值为()A2018 B2018 C2019 D20198若关于x的一元二次方程ax2+bx+50(a0)有一根为2020,则方程a(x+1)2+b(x+1)5必有根为()A2021 B2020 C2019 D20159M3x25x1,Nax25x7,其中x为任意数若M的值总大于N的值,则a可取的数为()A5 B4 C D210设m、n是一元二次方程x2+5x80的两个根,则m2+7m+2n()A5 B2 C2 D511将一元二次方程x23x+10变形为(x+h)2k的形式为 12某企业年初受疫情影响,第一季度的销售额为400万元,
4、由于我国控制疫情措施得力,该企业第二、三季度销售额连续增长,第三季度销售额达到了900万元,则二、三季度的平均增长率为 13小明的叔叔家承包了一个长方形的鱼池,这个长方形鱼池的面积为40平方米,其对角线长为10米为建栅栏,那么这个长方形鱼池的周长是 米14已知关于x的一元二次方程(a2)x2+2x+10有两个不相等的实数根,则a的取值范围是 152019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有 家公司参加了这次会议16若关于x的一元二次方程x24x+t1(t为实数)在3x5的范围内有解,则t的取值范围是
5、17三角形的两边长分别为3和4,第三边的长是方程x26x+80的一个根,则这个三角形的周长是 18设m、n分别为方程x2+2x20210的两个实数根,则m2+3m+n 19已知关于x的一元二次方程x2(2m+1)x+m210有实数根a,b,则代数式a2ab+b2的最小值为 20等腰三角形的两边恰为方程x27x+100的根,则此等腰三角形的周长为 21用适当的方法解方程(1)3x2x40 (2)(x+3)2(22x)222随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,某省2018年公共充电桩的数量为1万个,2020年公共充电桩的数量为2.89万个(1)求2018
6、年至2020年该省公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计2021年该省将新增多少万个公共充电桩?23某商场销售一款消毒用湿巾,这款消毒用湿巾的成本价为每包6元,当销售单价定为10元时,每天可售出80包,根据市场行情,现决定降价销售,市场调研反映:销售单价每降低0.5元,则每天可多售出20包,为使每天这种消毒湿巾的利润达到360元,商场应把这种消毒湿巾降价多少元?24关于x的一元二次方程x2+2mx+m2+m0有两个不相等的实数根(1)求m的取值范围(2)设出x1、x2是方程的两根,且x12+x2212,求m的值25全球疫情爆发时,医疗物资极度匮乏,中国许多企业都积极的宣布
7、生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天现该厂要保证每天生产口罩6500万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?是否能增加生产线,使得每天生产口罩15000万个,若能,应该增加几条生产线?若不能,请说明理由26已知关于x的一元二次方程mx2(m+2)x+20()证明:不论m为何值时,方程总有实数根()m
8、为何整数时,方程有两个不相等的正整数根27某校九年级二班的一个数学综合实践小组去沃尔玛超市调查某种商品“十一”节期间的销售情况,下面是调查后小阳与其他两位同学交流的情况:小阳:据调查,该商品的进价为12元/件小佳:该商品定价为20元时,每天可售出240件小欣:在定价为20元的基础上,涨价1元,每天少售出20件;降价1元,则每天多售出40件根据他们的对话,若销售的商品每天能获利1920元时,应该怎样定价更合理?28如图,在ABC中,C90,AC6cm,BC8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动(1)如果P、Q同时出发,几秒钟
9、后,可使PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得PCQ的面积等于ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由参考答案1解:设yx22x+1,则y2+4y50整理,得(y+5)(y1)0解得y5(舍去)或y1即x22x+1的值为1故选:C2解:设tx2+y2(t0),则原方程转化为(t+2)(t+4)15,整理,得(t+7)(t1)0所以t+70或t10解得t7(舍去)或t1所以x2+y2的值为1故选:B3解:设道路的宽为x,根据题意得(32x)(20x)540故选:C4解:a(xm+1)2+b0,a(x+m1)2+b0,又关于x的方程a(x
10、+m)2+b0的解是x12,x21,x12或x11,解得x31,x42,故选:D5解:x28x+150,(x3)(x5)0,则x30或x50,解得x13,x25,若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去;若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+616,故选:B6解:设动点P,Q运动t秒后,能使PBQ的面积为15cm2,则BP为(8t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,(8t)2t15,解得t13,t25(当t5时,BQ10,不合题意,舍去)动点P,Q运动3秒时,能使PBQ的面积为15cm2故选:
11、B7解:a是方程x2x10的一个根,a2a10,a2a1,2a2+2a+20202(a2a)+202021+20202018故选:A8解:由a(x+1)2+b(x+1)5得到a(x+1)2+b(x+1)+50,对于一元二次方程a(x+1)2+b(x+1)5,设tx+1,所以at2+bt+50,而关于x的一元二次方程ax2+bx+50(a0)有一根为x2020,所以at2+bt+50有一个根为t2020,则x+12020,解得x2019,所以一元二次方程a(x+1)2+b(x+1)5有一根为x2019故选:C9解:M3x25x1,Nax25x7,MN(3x25x1)(ax25x7)(3a)x2+
12、60,M的值总大于N的值,3a0,即a3观察选项,只有选项D符合题意故选:D10解m、n是一元二次方程x2+5x80的两个根,m+n5,m2+5m80,m2+7m+2nm2+5m+2(m+n)8102,故选:B11解:x23x+10,x23x1,x23x+()21+()2,(x)2,故答案为:(x)212解:设平均增长率为x,根据题意可列出方程为:400(1+x)2900解得:(1+x)2,所以1+x1.5所以x10.5,x22.5(舍去)故x0.550%即:这个增长率为50%,故答案为:50%13解:设矩形的长是a,宽是b,根据题意,得:,+2,得(a+b)2180,即a+b6,2(a+b)
13、6212(米)答:矩形的周长是12米故答案为:1214解:关于x的一元二次方程(a2)x2+2x+10有两个不相等的实数根,解得:a3且a2故答案为:a3且a215解:设共有x家公司参加了这次会议,根据题意,得x(x1)28整理,得 x2x560解得x18,x27(不合题意,舍去)答:共有8家公司参加了这次会议故答案是:816解:设yx24x+t1,3x5,164(t1)0,解得t5,对称轴为x2,x3时,y9+12+t10,解得t20故t的取值范围是20t5故答案为:20t517解:x26x+80,(x2)(x4)0,x20或x40,解得:x2或x4,当x2时,三角形的三边满足2+34,能构
14、成三角形,周长为2+3+49;当x4时,三角形的三边满足3+44,可以构成三角形,周长为3+4+411,所以这个三角形周长为9或11,故答案为:9或1118解:m,n分别为一元二次方程x2+2x20210的两个实数根,m2+2m2021,m+n2,m2+3m+nm2+2m+(m+n)202122019故答案是:201919解:关于x的一元二次方程x2(2m+1)x+m210有实数根a,b,a+b2m+1,abm21,0,(2m+1)241(m21)4m2+4m+14m2+44m+50,ma2ab+b2(a+b)23ab(2m+1)23(m21)4m2+4m+13m2+3m2+4m+4(m+2)
15、2,a2ab+b2的最小值为:故答案为:20解:x27x+100,(x2)(x5)0,(x2)0或(x5)0,x12,x25,等腰三角形的两边恰为方程x27x+100的根,且2+25,该三角形的三边分别为2,2,2,或2,5,5,或5,5,5此等腰三角形的周长为:2+2+26,或2+5+512,或5+5+515故答案为:6或12或1521解:(1)3x2x40,(3x4)(x+1)0,3x40或x+10,解得:x1,x21;(2)(x+3)2(22x)2,两边开方得:x+3(22x),即x+322x,x+3(22x),解得:x1,x2522解:(1)设2018年至2020年该省公共充电桩数量的
16、年平均增长率为x,依题意得:(1+x)22.89,解得:x10.770%,x22.7(不合题意,舍去)答:2018年至2020年该省公共充电桩数量的年平均增长率为70%(2)2.8970%2.023(万个)答:预计2021年该省将新增2.023万个公共充电桩23解:设这种消毒湿巾降价x元,依题意得:(10x6)(80+20)360解得x1x21答:商场应把这种消毒湿巾降价1元24解:(1)根据题意得:(2m)24(m2+m)0,解得:m0m的取值范围是m0(2)根据题意得:x1+x22m,x1x2m2+m,x12+x2212,2x1x212,(2m)22(m2+m)12,解得:m12,m23(
17、不合题意,舍去),m的值是225解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2720,解得:x10.220%,x22.2(不合题意,舍去)答:每天增长的百分率为20%;(2)设应该增加m条生产线,则每条生产线的最大产能为(150050m)万个/天,依题意,得:(1+m)(150050m)6500,解得:m14,m225,又在增加产能同时又要节省投入,m4答:应该增加4条生产线;设增加a条生产线,则每条生产线的最大产能为(150050a)万个/天,依题意,得:(1+a)(150050a)15000,化简得:a229a+2700,(29)2412702390,方程无解不能增加生产
18、线,使得每天生产口罩15000万个26()证明:(m+2)28mm24m+4(m2)2,不论m为何值时,(m2)20,0,方程总有实数根;()解方程得,x,x1,x21,方程有两个不相等的正整数根,m1或2,m2不合题意,m127解:当涨价时,设每件商品定价为x元,则每件商品的销售利润为(x12)元,根据题意,得24020(x20)(x12)1920整理,得x244x+4800解得,x120,x224当降价时,设每件商品定价为y元,则每件商品的销售利润为(y12)元,根据题意,得240+40(20y)(y12)1920整理,得y238y+3600解得,y120,y218,综上所述,比较两种方案后,定价为18元更合理28解:(1)设x秒钟后,可使PCQ的面积为8平方厘米,由题意得:(6x)2x8,x2或x4,当2秒或4秒时,面积可为8平方厘米;(2)不存在理由:设y秒时,PCQ的面积等于ABC的面积的一半,由题意得:(6y)2y68y26y+120364120方程无解,所以不存在
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1