ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:531.04KB ,
资源ID:7189608      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7189608.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三极管的工作原理分解.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

三极管的工作原理分解.docx

1、三极管的工作原理分解三极管工作原理 一、很多初学者都会认为三极管是两个 PN 结的简单凑合(如图1)。这种想法是错误的,两个二极管的组合不能形成一个三极管。我们以 NPN 型三极管为例(见图 2 ),两个 PN 结共用了一个 P 区 基区,基区做得极薄,只有几微米到几十微米,正是靠着它把两个 PN 结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的 PN 结的特性。三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。 二、三极管的电流放大作用与其物理结构有关,三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探

2、讨。从应用的角度来讲,可以把三极管看作是一个电流分配器。一个三极管制成后,它的三个电流之间的比例关系就大体上确定了(见图 3 ),用式子来表示就是 和 称为三极管的电流分配系数,其中 值大家比较熟悉,都管它叫电流放大系数。三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。例如,基极电流的变化量 I b 10 A , 50 ,根据 I c I b 的关系式,集电极电流的变化量 I c 5010 500A ,实现了电流放大。 三、三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供 I b 、 I c 和 I e 这三个电流。为了

3、容易理解,我们还是用水流比喻电流(见图 4 )。这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。如果细管子中没有水流,粗管子中的闸门就会关闭。注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。三极管的基极 b 、集电极 c 和发射极 e 就对应着图 4 中的细管、粗管和粗细交汇的管子。电路见图 5 ,若给三极管外加一定的电压,就会产生电流 I b 、 I c 和 I e 。调节电位器 RP 改变基极电流 I b , I c 也随之变化。由

4、于 I c I b ,所以很小的 I b 控制着比它大 倍的 I c 。 I c 不是由三极管产生的,是由电源 V CC 在 I b 的控制下提供的,所以说三极管起着能量转换作用。 四、如图5,假设三极管的=100,RP=200K,此时的Ib=6v/(200k+100k)=0.02mA,Ic=I b=2mA当RP=0时,Ib=6v/100k=0.06mA,Ic=I b=2mA。以上两种状态都符合Ic=I b,我们说,三极管处于放大区。假设RP=0,Rb=1k,此时,Ib=6v/1k=6mA按Ic=I b计算,Ic应等于600mA,而实际上,由于图中300欧姆限流电阻(Rc)的存在,实际上Ic=

5、(6v/300)20mA,此时,IcI b,而且,Ic不再受Ib控制,即处于饱和区,当RP和Rb大到一定程度,使Ube死区电压(硅管约0.5V,锗管约0.3)此时be结处于不导通状态,Ib=0,则Ic=0,处于截止区。 五、单纯从“放大”的角度来看,我们希望 值越大越好。可是,三极管接成共发射极放大电路(图 6 )时,从管子的集电极 c 到发射极 e 总会产生一有害的漏电流,称为穿透电流 I ceo ,它的大小与 值近似成正比, 值越大, I ceo 就越大。 I ceo 这种寄生电流不受 I b 控制,却成为集电极电流 I c 的一部分, I c I b I ceo 。值得注意的是, I c

6、eo 跟温度有密切的关系,温度升高, I ceo 急剧变大,破坏了放大电路工作的稳定性。所以,选择三极管时,并不是 越大越好,一般取硅管 为 40 150 ,锗管取 40 80 。 六、在常温下,锗管的穿透电流比较大,一般由几十微安到几百微安,硅管的穿透电流就比较小,一般只有零点几微安到几微安。 I ceo 虽然不大,却与温度有着密切的关系,它们遵循着所谓的“加倍规则”,这就是温度每升高 10 , I ceo 约增大一倍。例如,某锗管在常温 20 时, I ceo 为 20A ,在使用中管芯温度上升到 50 , I ceo 就增大到 160A 左右。测量 I ceo 的电路很简单(图 7 ),

7、三极管的基极开路,在集电极与发射极之间接入电源 V CC ( 6V ),串联在电路中的电流表(可用万用表中的 0.1mA 挡)所指示的电流值就是 I ceo 。 七、严格地说,三极管的 值不是一个不变的常数。在实际使用中,调整三极管的集电极电流 I , 值会随着发生变化(图 8 )。一般说来,在 I c 很小(例如几十微安)或很大(即接近集电极最大允电流 I CM )时, 值都比较小,在 1mA 以上相当宽的范围内,小功率管的 值都比较大,所以,同学们在调试放大电路时,要确定合适的工作电流 I c ,以获得最佳放大状态。另外, 值也和三极管的其它参数一样,跟温度有密切的关系。温度升高, 值相应

8、变大。一般温度每升高 1 , 值增加 0.5 1 。 八、三极管有一个极限参数叫集电极最大允许电流,用 I CM 表示。 I CM 常称为三极管的额定电流,所以人们常常误认为超过了 I CM 值,由于过热会把管子烧坏。实际上,规定 I CM 值是为避免集电极电流太大时引起 值下降过多。一般把 值降低到它的最大值一半左右时的集电极电流定为集电极最大允许电流 I CM 。 九、三极管的电流放大系数 值还与电路的工作频率有关。在一定的频率范围内,可以认为 值是不随频率变化的(图 9 ),可是当频率升高到超过某一数值后, 值就会明显下降。为了保证三极管在高频时仍然具有足够的放大能力,人们规定:当频率升

9、高到使 值下降到低频( 1000Hz )值 0 的 0.707 倍时,所对应的频率称为 截止频率,用 f 表示。 f 就是三极管接成共发射极电路时所允许的最高工作频率。 三极管 截止频率 f 是在三极管接成共发射极放大电路时测定的。如果三极管接成共基极电路,随着频率的升高,其电流放大系数 ( I c I e )值下降到低频( 1000Hz )值 o 的 0.707 倍时,所对应的频率称为 截止频率,用 f 表示(图 10 )。 f 反映了三极管共基极运用时的频率限制。在三极管产品系列中,常根据 f 的大小划分低频管和高频管。国家规定, f 3MHz 的为低频管, f 3MHz 的为高频管。 当

10、频率高于 f 值后,继续升高频率, 值将随之下降,直到 1 ,三极管就失去了放大能力。为此,人们规定:在高频条件下, 1 时所对应的频率,称为特征频率,用 f T 表示。 f T 常作为标志三极管频率特性好坏的重要参数。在选择三极管时,应使管子的特征频率 f T 比实际工作频率高出 3 5 倍。 f 与 f 的物理意义是相同的,仅仅是放大电路连接方式不同。理论分析和实验都可以证明,同一只三极管的 f 值远比 f 值要小,它们之间的关系为f ( 1 ) f 这就说明了共发射极电路的极限工作频率比共基极电路低得多。所以,高频放大和振荡电路大多采用共基极连接。三极管的工作原理时间:2008-12-2

11、8 20:11:01来源:资料室作者:电磁阀结构与操作原理 三极管的基本结构是两个反向连结的pn接面,如图1所示,可有pnp和npn 两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集 极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出 npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体, 和二极体的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中 性的p型区和n型区隔开。 图1 pnp(a)与npn(b)三极管的结构示意图与电路符号。 三极管的电特性和两个pn接面的偏压有关,工作区间也

12、依偏压方式来分类,这里 我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接 面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管 都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的空乏 区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基 极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大, 故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情形 下,电洞和电子的电位能的分布图。 三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在 于

13、三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例, 射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极 方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时, 会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流 到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小 关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入 射极的电子流InB? E(这部分是三极管作用不需要的部分)。 InB? E在射极与与电 洞复合,即InB? E=IErec。pnp三极管在正向活性区

14、时主要的电流种类可以清楚地 在图3(a)中看出。 图2 (a)一pnp三极管偏压在正向活性区;(b)没外加偏压,和偏压在正向 活性区两种情形下,电洞和电子的电位能的分布图比较。 图3 (a) pnp三极管在正向活性区时主要的电流种类;(b)电洞电位能分布及 注入的情形;(c)电子的电位能分布及注入的情形。 一般三极管设计时,射极的掺杂浓度较基极的高许多,如此由射极注入基极 的射极主要载体电洞(也就是基极的少数载体)IpE? B电流会比由基极注入射极 的载体电子电流InB? E大很多,三极管的效益比较高。图3(b)和(c)个别画出电洞 和电子的电位能分布及载体注入的情形。同时如果基极中性区的宽度

15、WB愈窄, 电洞通过基极的时间愈短,被多数载体电子复合的机率愈低,到达集电极的有效电 洞流IpE? C愈大,基极必须提供的复合电子流也降低,三极管的效益也就愈高。 集电极的掺杂通常最低,如此可增大CB极的崩溃电压,并减小BC间反向偏压的 pn接面的反向饱和电流,这里我们忽略这个反向饱和电流。 由图4(a),我们可以把各种电流的关系写下来: 射极电流IE=IpE? B+ IErec = IpE? B+ InB? E =IpE? C+ IBrec + InB? E (1a) 基极电流IB= InB? E + IBrec= IErec + IBrec (1b) 集电极电流IC =IpE? C= IE

16、 - IErec - IBrec= IE - IB (1c) 式1c也可以写成 IE = IC + IB 射极注入基极的电洞流大小是由EB接面间的正向偏压大小来控制,和二极 体的情形类似,在启动电压附近,微小的偏压变化,即可造成很大的注入电流变 化。更精确的说,三极管是利用VEB(或VBE)的变化来控制IC,而且提供之IB远 比IC小。npn三极管的操作原理和pnp三极管是一样的,只是偏压方向,电流方 向均相反,电子和电洞的角色互易。pnp三极管是利用VEB控制由射极经基极、 入射到集电极的电洞,而npn三极管则是利用VBE控制由射极经基极、入射到集电极 的电子,图4是二者的比较。 经过上面讨

17、论可以看出,三极管的效益可以由在正向活性区时,射极电流中 有多少比例可以到达集电极看出,这个比例习惯性定义作希腊字母 图4 pnp三极管与npn三极管在正向活性区的比较。 而且a一定小于1。效益高的三极管,a可以比0.99大,也就是只有小于1%的射极 电流在基极与射极内与基极的主要载体复合,超过99%的射极电流到达集电极! 了解正向活性区的工作原理后,三极管在其他偏压方式的工作情形就很容易理 解了。表1列出三极管四种工作方式的名称及对应之BE和BC之pn接面偏压方 式。反向活性区(reverse active)是将原来之集电极用作射极,原来的射极当作集电极, 但由于原来集电极之掺杂浓度较基极低

18、,正向偏压时由原基极注入到原集电极之载体 远较原集电极注入基极的多,效益很差,也就是说和正向活性区相比,提供相同的 基极电流,能够开关控制的集电极电流较少,a较小。在饱和区(saturation),两个 接面都是正向偏压,射极和集电极同时将载体注入基极,基极因此堆积很多少数载 体,基极复合电流大增,而且射极和集电极的电流抵销,被控制的电流量减小。在 截止区(cut off),BE和BC接面均不导通,各极间只有很小的反向饱和电流,三 极间可视作开路,也就是开关在关的状态。 名称正向活性区反向活性区饱和区截止区(forward active) (reverse active) (saturatio

19、n) (cut off ) BE 接面正向偏压反向偏压正向偏压反向偏压BC 接面反向偏压正向偏压正向偏压反向偏压用途线性信号放大器数字电路开关电路很少使用数字电路 开关电路数字电路 开关电路工作模式射极结面极集结面饱和正向偏压正向偏压线性正向偏压反向偏压反向反向偏压正向偏压截止反向偏压反向偏压 表中同时列出了四种工作方式的主要用途。 三极管在数字电路中的用途其实 就是开关,利用电信号使三极管在正向活性区(或饱和区)与截止区间切换,就 开关而言,对应开与关的状态,就数字电路而言则代表0与1(或1与0)两个 二进位数字。若三极管一直维持偏压在正向活性区,在射极与基极间微小的电信 号(可以是电压或电

20、流)变化,会造成射极与集电极间电流相对上很大的变化,故 可用作信号放大器。下面在介绍完三极管的电流电压特性后,会再仔细讨论三极管 的用途。三极管截止与饱合状态 截止状态 三极管作为开关使用时,仍是处于下列两种状态下工作。 1.截止(cut off)状态:如图5所示,当三极管之基极不加偏压或 加上反向偏压使BE极截止时(BE极之特性和二极管相同,须加 上大于0.7V之正向偏压时才态导通),基极电流IB=0,因为IC= IB,所以IC=IE=0,此时CE极之间相当于断路,负载无电流。 a)基极(B)不加偏压使 基极电流IB等于零(b)基极(B)加上反向偏 压使基极电流IB等于零(c)此时集极(C)

21、与射极(E) 之间形同段路,负载无 电流通过 图5 三极管截止状态饱合状态饱合(saturation)状态:如图6所示,当三极管之基极加入驶 大的电流时,因为ICIE=IB,射极和集极的电流亦非常大,此 时,集极与射极之间的电压降非常低(VCE为0.4V以下),其意义相 当于集极与射极之间完全导通,此一状态称为三极管饱合。 图6 (a)基极加上足够的顺向(b)此时C-E极之间视同偏压使IB足够大导通状态晶体管的电路符号和各三个电极的名称如下 图7 PNP型三极管 图8NPN型三极管三极管的特性曲线 1、输入特性 图2 (b)是三极管的输入特性曲线,它表示Ib随Ube的变化关系,其特点是:1)当

22、Uce在0-2伏范围内,曲线位置和形状与Uce有关,但当Uce高于2伏后,曲线Uce基本无关通常输入特性由两条曲线(和)表示即可。 2)当UbeUbeR时,IbO称(0UbeR)的区段为“死区”当UbeUbeR时,Ib随Ube增加而增加,放大时,三极管工作在较直线的区段。 3)三极管输入电阻,定义为: rbe=(Ube/Ib)Q点,其估算公式为: rbe=rb+(+1)(26毫伏/Ie毫伏) rb为三极管的基区电阻,对低频小功率管,rb约为300欧。 2、输出特性 输出特性表示Ic随Uce的变化关系(以Ib为参数)从图9(C)所示的输出特性可见,它分为三个区域:截止区、放大区和饱和区。 截止区

23、当Ube0时,则Ib0,发射区没有电子注入基区,但由于分子的热运动,集电集仍有小量电流通过,即Ic=Iceo称为穿透电流,常温时Iceo约为几微安,锗管约为几十微安至几百微安,它与集电极反向电流Icbo的关系是: Icbo=(1+)Icbo 常温时硅管的Icbo小于1微安,锗管的Icbo约为10微安,对于锗管,温度每升高12,Icbo数值增加一倍,而对于硅管温度每升高8, Icbo数值增大一倍,虽然硅管的Icbo随温度变化更剧烈,但由于锗管的Icbo值本身比硅管大,所以锗管仍然受温度影响较严重的管,放大区,当晶体三极管发射结处于正偏而集电结于反偏工作时,Ic随Ib近似作线性变化,放大区是三极管

24、工作在放大状态的区域。 饱和区当发射结和集电结均处于正偏状态时,Ic基本上不随Ib而变化,失去了放大功能。根据三极管发射结和集电结偏置情况,可能判别其工作状态。 图9三极管的主要参数 1、直流参数 (1)集电极一基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb时的集电极反向电流,它只与温度有关,在一定温度下是个常数,所以称为集电极一基极的反向饱和电流。良好的三极管,Icbo很小,小功率锗管的Icbo约为110微安,大功率锗管的Icbo可达数毫安培,而硅管的Icbo则非常小,是毫微安级。 (2)集电极一发射极反向电流Iceo(穿透电流)基极开路(Ib=

25、0)时,集电极和发射极之间加上规定反向电压Vce时的集电极电流。 Iceo大约是Icbo的倍即Iceo=(1+)Icbo o Icbo和Iceo受温度影响极大,它们是衡量管子热稳定性的重要参数,其值越小,性能越稳定,小功率锗管的Iceo比硅管大。 (3)发射极-基极反向电流Iebo集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的电流,它实际上是发射结的反向饱和电流。 (4)直流电流放大系数1(或hEF)这是指共发射接法,没有交流信号输入时,集电极输出的直流电流与基极输入的直流电流的比值,即: 1=Ic/Ib 2、交流参数 (1)交流电流放大系数(或hfe)这是指共发射极接法,集电极

26、输出电流的变化量Ic与基极输入电流的变化量Ib之比,即: = Ic/Ib 一般电晶体的大约在10-200之间,如果太小,电流放大作用差,如果太大,电流放大作用虽然大,但性能往往不稳定。 (2)共基极交流放大系数(或hfb)这是指共基接法时,集电极输出电流的变化是Ic与发射极电流的变化量Ie之比,即: =Ic/Ie 因为IcIe,故1。高频三极管的0.90就可以使用 与之间的关系: = /(1+) = /(1-)1/(1-) (3)截止频率f、f当下降到低频时0.707倍的频率,就什发射极的截止频率f;当下降到低频时的0.707倍的频率,就什基极的截止频率fo f、 f是表明管子频率特性的重要参

27、数,它们之间的关系为: f(1-)f (4)特征频率fT因为频率f上升时,就下降,当下降到1时,对应的fT是全面地反映电晶体的高频放大性能的重要参数。 3、极限参数 (1)集电极最大允许电流ICM当集电极电流Ic增加到某一数值,引起值下降到额定值的2/3或1/2,这时的Ic值称为ICM。所以当Ic超过ICM时,虽然不致使管子损坏,但值显著下降,影响放大品质。 (2)集电极-基极击穿电压BVCBO当发射极开路时,集电结的反向击穿电压称为BVEBO。 (3)发射极-基极反向击穿电压BVEBO当集电极开路时,发射结的反向击穿电压称为BVEBO。 (4)集电极-发射极击穿电压BVCEO当基极开路时,加

28、在集电极和发射极之间的最大允许电压,使用时如果VceBVceo,管子就会被击穿。 (5)集电极最大允许耗散功率PCM集电流过Ic,温度要升高,管子因受热而引起参数的变化不超过允许值时的最大集电极耗散功率称为PCM。管子实际的耗散功率于集电极直流电压和电流的乘积,即Pc=UceIc.使用时庆使PcPCM。 PCM与散热条件有关,增加散热片可提高PCM。晶体三极管用途 晶体三极管的用途主要是交流信号放大,直流信号放大和电路开关。晶体三极管偏置使用晶体管作放大用途时,必须在它的各电极上加上适当极性的电压,称为“偏置电压”简称“偏压”, 又“偏置偏流”。电路组成上叫偏置电路。晶体管各电极加上适当的偏置

29、电压之后,各电极上便有电流流动。 通过发射极的电流称为“射极电流”,用IE表示;通过基极的电流称为“基极电流”,用IB表示;通过集电极的电流称为“集极电流”,用IC表示。 图10晶体管三个电极的电流有一定关系,公式如下IE IBIC晶体三极管的三种放大电路 三极管放大电路 当晶体管被用作放大器使用时,其中两个电极用作信号 (待放大信号) 的输入端子;两个电极作为信号 (放大后的信号) 的输出端子。那么,晶体管三个电极中,必须有一个电极既是信号的输入端子,又同时是信号的输出端子,这个电极称为输入信号和输出信号的公共电极。 按晶体管公共电极的不同选择,晶体管放大电路有三种:共基极电路 ( Common base circuit)、共射极电路

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1