ImageVerifierCode 换一换
格式:DOCX , 页数:21 ,大小:474KB ,
资源ID:7170324      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7170324.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(完整版一种基于正交离散过程的蚁群算法毕业论文.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

完整版一种基于正交离散过程的蚁群算法毕业论文.docx

1、完整版一种基于正交离散过程的蚁群算法毕业论文郑州航空工业管理学院毕 业 论 文(设 计) XXXXXXXXX 届 机械设计制造及其自动化 专业 班级题 目 基于正交离散过程的蚁群算法 姓 名 XXXXXXXXXX 学 指导教师 XXX 职称 XX 二一 年 五 月 十八 日基于正交离散过程的蚁群算法内 容 摘 要 蚁群算法是一种仿生优化算法,其灵感来源于真实蚁群的觅食机理,这种思想吸收了蚂蚁群体有规律的行为,通过对真实蚁群搜索食物过程的模拟来完成对问题的求解。 本文首先介绍了蚁群算法的研究进展和基本原理,然后对蚁群算法的改进优化和仿真应用分别进行了描述。为了解决蚁群算法在初始阶段执行效率低下、

2、信息素随机分布、路径杂乱无章的缺点,本文采取了几项改进措施。例如:将正交设计方法引入初始化中,创建正交离散过程,形成正交优化的路径设置;优化初始化过程,以便形成初始解;以动态概率转移规则来构造新的路径;精练的选路策略等改进措施的初始路径优化模型。该模型提高了算法的执行效率,其成功应用于解决连续域问题的啤酒配方设计方面,表明该方法是有效可行的,同时开辟了一条解决啤酒配方设计问题的新途径,对蚁群算法解决连续域问题提供了可供参考的模型和求解方法。 关键词蚁群算法;正交设计;正交离散;连续优化;啤酒配方设计 Ant Colony Algorithm based on orthogonal discre

3、te process (Mechanical and electrical engineering institute, Aviation industry management college in zheng zhou )Abstract The ant colony algorithm is a novel simulated evolutionary algorithm, which is inspired by foraging mechanisms of real ant colonies. This idea absorbs the regular behaviors of th

4、e ants colonies, by simulating the process of the real ant colonys searching for food to solve the problems.The current research progresses and basic principle of ant colony algorithm are firstly introduced in this paper, then the improvement optimization and simulation application of ant colony alg

5、orithm are also overviewed respectively. In order to solve the problems of low efficiency, randomly distributed pheromone, scrambled paths in the initial stage of the ant colony algorithm. Several improved methods of the initial paths optimization model are proposed. For example, the orthogonal desi

6、gn method is introduced to the initial route optimization course so as to create orthogonal discrete process and form the path settings of orthogonal optimization; The initial course is optimized in order to get the initial solutions; Dynamical transfer rules are used to construct the new paths; Ref

7、ined routing strategies and so on. This model enhances the implementation efficiency of the algorithm. And then the beer recipe design simulation application is successfully presented to prove validity and feasibility of the proposed method, consequently, opening up a new way in terms of beer recipe

8、 design, and the method offers referenced models and solving methods for ant colony algorithm to solve the continual domain problems. Key wordsAnt Colony Algorithm; orthogonal design; orthogonal discretion; continuous optimization; beer recipe design 目 录内容摘要. 1Abstract. 2第一章 绪论 61.1 研究背景 61.2 国内外对蚁群

9、算法的研究进展 71.3 本文的研究主线及体系结构 7第二章 蚁群算法 92.1 蚁群算法的基本原理及其数学模型 92.1.1 真实蚁群的觅食机理 92.1.2 基本蚁群算法数学模型的建立 112.1.3 基本蚁群算法的系统学特征 132.2 基本蚁群算法的具体实现 142.2.1 基本蚁群算法的实现步骤 142.2.2 基本蚁群算法的程序结构流程图 15第三章 基于正交离散过程的蚁群算法 173.1 正交试验设计 173.1.1 正交试验设计的基本概念 173.1.2 正交试验设计的基本原理 173.1.3 正交表及其基本性质 193.2 基于正交离散过程的蚁群算法 203.2.1 正交离散

10、过程蚁群算法的基本原理 203.2.2 正交离散过程蚁群算法的寻优过程 233.2.3 正交离散过程蚁群算法的数学模型 263.3 正交离散过程蚁群算法的具体实现 273.3.1 正交离散过程蚁群算法的实现步骤 273.3.2 正交离散过程蚁群算法的程序结构流程图 273.4 正交离散过程蚁群算法的仿真应用 29第四章 本文的工作总结与展望 344.1 本文的工作总结 344.2 展望 34致 谢 35参考文献 36 第一章 绪论1.1 研究背景根据蚂蚁群体寻找食物的行为,1991年,意大利学者Dorigo M.等人在法国巴黎召开的第一届欧洲人工生命会议上提出了基本蚁群算法的基本模型;1992

11、年,Dorigo M在其博士论文中又进一步描述了蚁群算法的基本原理。蚁群算法是最新发展起来的一种模拟蚂蚁群体智能行为的仿生优化算法,该算法采用了正反馈并行自催化机制,在解决许多实际复杂优化问题方面展现出了良好性能和巨大的发展潜力,近几年吸引了国内外许多学者对蚁群算法进行了多方面的研究工作。国际顶级学术期刊Nature曾多次对蚁群算法的研究成果进行报道,IEEE Transactions On Evolutionary Computation和Future Generation Computer Systems分别在2001年和2003年出版了蚁群算法特刊,在布鲁塞尔每两年召开一次的蚁群算法国际

12、研讨会进一步促进了该仿生优化算法的学术交流,从而使蚁群算法展示出了勃勃生机和广阔的发展前景。目前,这种新生的仿生优化算法已成为在国际智能计算领域中备受关注的前沿性课题和研究热点。1.2 国内外对蚁群算法的研究进展自从1991年意大利学者DorigoM.首次提出蚁群算法以后,蚁群算法逐渐得到了世界许多研究者的关注,其在很多领域得到了很好的应用,在这期间国内外大量有价值的研究成果也陆续发表。2000年,Dorigo M和Bonabeau E等在国际顶级学术刊物Nature上发表了蚁群算法的研究综述,从而把这一领域的研究推向了国际学术最前沿性的课题,鉴于Dorigo M在蚁群算法研究领域做出的的杰出

13、贡献,2003年11月欧盟委员会特别授予他“居里夫人杰出成就奖”。我国在蚁群算法领域的研究也取得了一些令世人瞩目的成就:陈烨在2001年发表了带杂交算子的蚁群算法一文,并且基于Visual Basic开发了一个功能齐全人性化的“蚁群算法实验室”。在2003到2005年间,李艳君、段海滨提出了一种基于网格划分措施的自适应连续域蚁群算法和一种用于求解连续域优化问题的自适应连续域蚁群算法。在2008年,郑松为了解决蚁群算法在解决组合优化问题时收敛速度慢、消耗时间长的缺点,提出将确定性搜索引入基本蚁群算法的搜索过程中,并研究了改进后的蚁群算法在啤酒配方优化设计中的具体应用。1.3 本文的研究主线及体系

14、结构1)本文的研究主线:研究主线是基于正交离散过程的蚁群算法,通过将蚁群算法与正交试验设计相结合,把连续性问题离散化,在常规搜索中创建正交离散过程,优化路径设置提高算法的搜索速度和运行效率。将基于正交离散过程的蚁群算法应用于啤酒原料配方设计实践中,取得了非常好的效果,从而开辟了一种解决连续域变量问题的求解方法。2)本文的体系结构:本文全面地介绍了蚁群算法的理论、方法及其具体实现,按照分析、深化、改进、仿真应用的逻辑结构进行安排,本文共分为四章,其内容基本上构成了一个完整体系,具体而言,各章主要包括如下内容:第一章 阐述了蚁群算法的研究背景及国内外对蚁群算法的研究进展,同时列举了部分改进的蚁群算

15、法及其应用情况,最后给出了本文的研究主线和体系结构。第二章 在介绍蚂蚁的群体觅食行为特征的基础上,从深层意义上进一步分析蚁群算法的机制原理、数学模型、以及具体实现步骤,最后讨论了基本蚁群算法的系统学特征。本章主要内容对基本蚁群算法原理进行分析,也是后面章节对蚁群算法进行改进研究的基础。第三章 详细阐述基于正交离散过程的蚁群算法。分析了正交试验设计的基本原理、正交离散的基本原理、特点,以及正交离散过程蚁群算法实现寻优过程的寻优规则、数学模型,并分析了该改进型蚁群算法在啤酒原料配方设计方面的仿真应用等内容。第四章 对本文的主要内容进行总结,讨论了目前蚁群算法所存在的主要问题,然后从蚁群算法的模型改

16、进、理论分析、并行实现、应用领域等方面对蚁群算法在以后的研究进展方向进行了讨论。第二章 蚁群算法2.1 蚁群算法的基本原理及其数学模型2.1.1 真实蚁群的觅食机理 根据研究者的长期观察发现:蚂蚁在运动时会在路径上释放出一种信息素来寻找路径。当它们碰到一个陌生路口时,就任意挑选一条路径前进,同时释放出与路径长度相关的一定强度信息素。蚂蚁走过的路径越长,所释放的信息素就越少。当后来的蚂蚁再次来到这个路口时,选择信息素强度较大路径的可能性较大,这样蚁群之间就会形成一种信息正反馈机制。最短路径上的信息素强度逐渐增大,而其他路径上的信息素强度随着时间的推移而逐渐消减,最终整个蚁群就会找出最佳路径。如图

17、2.1.1(a)所示,我们总可以观察到蚂蚁群体在蚁穴与食物之间形成近似于直线形状的路径,而不是曲线、折线等其他形状。如图2.1.1(b)所示,在蚂蚁运动路线上有障碍物出现时,开始时各只蚂蚁均匀分布,不管路径是长是短,蚂蚁先随机选择各条路径。蚂蚁在运动过程中在经过的路径上留下一定强度的信息素,其他蚂蚁能够感知这种物质的强度,并以此指导自己继续向信息素浓度高的方向移动,如图2.1.1(c)所示,蚂蚁倾向于选择信息素浓度高的路径,在相等时间内,较短路径上遗留的信息素逐渐增多,选择较短路径的蚂蚁也越来越多。蚂蚁集体行为存在着一种信息正反馈现象,即蚂蚁在某一路径上经过的次数越多,后来的蚂蚁就越有可能选择

18、该路径,蚂蚁个体之间就是通过这种信息正反馈机制来搜索食物并最终找到最优路径的,如图2.1.1(d)所示。 图2.1.1 现实中蚁群寻找食物的过程 由上述可见,在整个寻优过程中,虽然单只蚂蚁的寻优能力有限,但是整个蚁群的行为通过信息素的作用便具有非常高的自组织性能,蚂蚁之间交换路径信息素,最终通过蚂蚁的正反馈机制找到最佳路径。2.1.2 基本蚁群算法数学模型的建立蚁群算法首先成功应用于TSP问题,TSP问题就是给定n个城市与城市之间的距离,某一旅行商从某一城市出发,逐个访问各个城市一次且仅一次后再回到原来出发的城市,找出一条最短的巡游路径。下面我们以简单的TSP问题为例来说明蚁群算法基本原理。将

19、m只蚂蚁随机放在n个城市上,设初始时刻各个城市之间每一条路径上的信息素强度=c (c是常数),表示禁忌表,记录当前蚂蚁所走过的城市集合, 不允许蚂蚁再次访问禁忌表中的城市结点。当n个城市结点都进入禁忌表中时,表示蚂蚁进行了一次完整循环。在搜索当中, 蚂蚁根据状态转移概率来选择各条路径上的城市节点。在t时刻,蚂蚁k(k=1,2,m)由城市i转移到城市j的转移概率为 (1)式(1)中有:表示t时刻路径(i,j)上的信息素强度;表示信息素启发因子,表示蚂蚁在运动过程中积累的信息素所起的作用;是期望启发式因子,表示路径能见度的相对重要程度,反映了蚂蚁在选择路径过程中启发式信息所起的作用;是启发函数,在

20、TSP问题中,通常取=,是相邻两个城市节点之间的距离,启发函数表示蚂蚁k从i城市移动到j城市的期望程度; =1,2,n-表示不在禁忌表中的城市集合,表示蚂蚁下一步要继续搜索的城市集合。为了避免信息素残留的过多引起残留信息掩盖启发信息,在每只蚂蚁走完一步或遍历完所有城市后,要对残留的信息素进行适时更新。在t+n时刻在路径(i,j)上的信息素强度要可按以下公式更新调整:() ()其中表示蚂蚁在本次循环中路径(i,j)上的信息素增量,设初始时刻。表示蚂蚁k在本次循环中在路径(i,j)上的信息素增量。是信息素挥发系数,1-则表示信息素残留系数,为了防止信息素累积过多,的取值范围应该为:。信息素挥发因子

21、的取值大小影响到蚁群算法的全局搜索效率和收敛速度,信息素残留因子1-表示了蚂蚁个体之间相互影响的程度。根据不同的信息素更新措施,Dorigo M提出了三种基本蚁群算法模型,分别是Ant-Cycle模型、Ant-Quantity模型和Ant-Density模型,它们之间的差别在于的求法有所不同。在Ant-Cycle模型中 ()式()中,L表示第k只蚂蚁在本次循环中所经过路径的总长度,Q为常数,指信息素强度,表示的是蚂蚁在本次循环中释放在所经过路径上的信息素总量。在Ant-Quantity模型中 () 在Ant-Density模型中 ()它们的区别在于:式()和()中表示的是局部信息素,也就是蚂蚁

22、在走完一步后更新路径上的信息素;而式()中表示的是整体信息素,即蚂蚁完成一次完整循环后更新所经过路径上的信息素,(4)在求解TSP问题时性能比较好,因此通常采用公式()作为蚁群算法的基本模型。2.1.3 基本蚁群算法的系统学特征1)基本蚁群算法是一个系统系统强调系统元素之间的相互影响程度以及系统对其中元素的整体作用。蚂蚁群体就构成了一个系统,在该系统中,蚂蚁的个体行为可作为系统中的元素,蚂蚁个体之间的相互影响表现了系统的相关性,而整个蚂蚁群体能够完成个体所完成不了的复杂任务则体现了系统的整体性。在基本蚁群算法中,多只蚂蚁的求解结果明显好于单只蚂蚁的求解结果,因此基本蚁群算法是一个系统。2)分布

23、式计算类似于人体很多细胞相互独立地完成某一项工作,当其中一个细胞停止工作后,人身体的整体功能不会因此而受到影响。蚁群算法也体现了分布式特点。每只蚂蚁个体在整个问题空间的多个节点相互独立地构造问题的解,而整个问题的求解过程不会因为其中某只蚂蚁无法求解而受到影响。分布式特征增强了蚁群算法的可靠性。3)自组织性昆虫群落中的生物个体相互作用,可以协同完成一项集体工作,体现了较强的自组织性能。蚁群算法就体现了自组织性。在算法的初始阶段,单只蚂蚁杂乱无章地寻找解,但是算法经过一段时间的演化过程,蚂蚁越来越倾向于搜索那些接近于最优解的一部分解,这就体现出蚂蚁行为从无序到有序的自组织性。自组织性增强了算法的鲁

24、棒性。4)正反馈从自然界中真实蚁群的觅食行为机制可以发现,蚂蚁之所以能够找到最优路径,主要是由于信息素不断地在较优路径上的累积,而信息素的累积过程就是一个正反馈过程。基本蚁群算法的反馈机制是在较优路径上留下更多的信息素,而更多的信息素又吸引来了更多的蚂蚁,这个过程引导着整个系统不断向最优解的方向进化。以上从系统学方面分析了蚁群算法的机理,可见蚁群算法体现了不同于常规算法的许多新思想,这也正是基本蚁群算法在系统学上研究的意义所在。2.2 基本蚁群算法的具体实现2.2.1 基本蚁群算法的实现步骤 基本蚁群算法的具体实现步骤如下:()令初始时刻循环次数,设最大循环次数为,将个蚂蚁随机放在个元素节点上

25、,设每条路径(,)的初始化信息量(为常数),初始时刻设置每条路径上的信息素增量。()循环次数。()设初始时刻蚂蚁的禁忌表索引号。()蚂蚁数目。()蚂蚁个体根据状态转移概率公式()选择下一个元素,然后继续往前搜索移动,此时。()选择好下一个元素之后,再将蚂蚁移动到新的元素节点,并把该元素转移到该蚂蚁个体的禁忌表中,此时,。()如果集合中元素还没有遍历完,即,则跳转到第()步,否则执行第()步。()根据路径上信息量更新公式()和信息量变化公式()更新每条路径(,)上的信息量。()如果满足结束条件,即循环次数,则本次循环结束,输出程序计算的最佳结果,否则清空禁忌表并跳转到第()步。2.2.2 基本蚁

26、群算法的程序结构流程图基本蚁群算法的程序结构流程图如图2.2.2所示。第三章 基于正交离散过程的蚁群算法3.1 正交试验设计3.1.1 正交试验设计的基本概念在正交试验要解决的实际问题中,要明确评价试验效果的影响指标,影响试验评价指标者称为因素,因素在试验中变化的状态称为水平。对于单因素或者两因素试验,其因素数较少,试验的设计、安排都比较简单。但在实际生产过程中要研究许多因素多水平对产品指标的影响。例如因素数为a, 因素的水平数为b, 则多因素全面试验方案的次数为次,从试验次数的公式可知, 因素数和水平数增多, 试验次数将会大大增加。例如有5个因素,每个因素有4个水平,若全面试验就要进行次,这

27、样试验规模就会大大增加,给研究工作带来了繁重的任务, 而且也会消耗大量时间、原材料和财力。正交试验设计就是利用正交表来安排、分析多因素多水平试验的一种设计方法。它是从全面试验的全部水平组合中,挑选出一部分代表性很强的水平组合进行试验,通过分析这部分有代表性水平组合的试验结果,来了解全面试验的情况,减少试验次数,从而找出最优水平组合。3.1.2 正交试验设计的基本原理在试验安排中,当因素水平数不多时,适合进行全面试验,例如,一个三因素三水平试验,各因素各水平之间的全部水平组合就有33=27种。可以用一个立方体来表示多因素试验的选优区域,对于3因素3水平试验,就可以选择有27个网格点的立方体作为选

28、优区,如果这27个格点都进行试验,就是全面试验。全面试验的数据试验点分布如图3.1.21所示。图3.1.21 全面试验的数据试验点分布由图可见:全面试验数据均匀分布,各个因素水平全面搭配,缺点就是试验次数太多,如果是5因素4水平试验,全面试验的话就要进行次试验,这会因实验条件的实际限制而难于实施,因此全面试验适用于因素水平数不多的情况下。正交试验设计就是从全面试验点中挑选一部分具有代表性的试验点来进行试验。对于3因素3水平而言,设有A,B,C三个因素,A因素有三个试验水平,B因素有三个试验水平,C因素有三个试验水平,利用正交表从27个试验点中挑选出9个试验点,这9个试验点为:(1);(2);(

29、3);(4);(5);(6);(7);(8);(9)。这种选择保证了A因素的3个水平与B、C因素的3个水平在试验过程中各搭配一次,对于A、B、C这3个因素来说,正交试验次数仅是全面试验次数的三分之一,这样就大大减少了试验次数。正交试验设计的数据试验点在立方体选优区中的分布如图3.1.22所示:图3.1.22 正交试验设计的数据试验点分布 从图3.1.22中可以看到,9个试验数据点在选优区中均衡分布,在立方体的每个平面上恰好只有3个试验点,在立方体的每条线上恰好只有1个试验点。所选的这9个试验点在整个立方体内均衡分布,代表性很强,能够全面反映整个立方体选优区内的基本情况。因此它们能很好地代表27

30、次全面试验的情况,这就是正交试验设计的优点。3.1.3 正交表及其基本性质正交表是正交试验设计的基本工具,正交试验设计安排以及分析试验结果都要用到正交表,合理选用正交表是正交设计的基础。常用的正交表已经规范标准化,我们根据试验需要从参考书中选取合适的正交表。正交表的记号为,其中L代表正交表,是试验次数即正交表的行数,b表示水平数,表示因素数即列数。正交表的基本性质如下:1)正交性:在正交表中任意一列中,某因素的所有水平都出现,且出现的次数是相等的,在任意两列之间,两因素的各种不同水平组合都出现,并且出现的次数也相等。2)均衡分布性:在正交表中的各因素水平组合在选优区中均衡分布。例如图3.1.2

31、2所示,在立方体中,每一平面内只有3个数据试验点,每一条直线上只包含1个试验点,正交试验点均衡分布在全面试验点中。3)独立性:正交表中没有完全重复的水平组合,从全面试验组合中挑出的这一部分试验组合没有重复试验的情况,在讨论某一因素时,不用考虑其他因素的影响,正交表中的试验方案能够综合处理大量的信息。4)整齐可比性:整齐可比是指各个因素的各个水平之间具有可比性。正交表中某一因素的各个水平都均匀搭配着其他因素的各个水平。如在3因素3水平试验中的A、B、C3个因素,A因素的3个水平A1、A2、A3各搭配 B、C两因素的3个不同水平,即:(1);(2);(3);(4);(5);(6);(7);(8);(9)。在这9个水平组合中,A因素下的3个水平分别组合了B、C两因素的3个水平,且任意两个水平组合不会有重复的情况。A因素3水平之间具有整齐可比性。同理B、C两因素的3水平间也具有整齐可比性。3.2 基于正交离散过程的蚁群算法3.2.1 正交离散过程蚁群算法的基本原理传统基本蚁群算法在实际应用中主要是解决离散域的组合优化问题,而难于解决连续域变量的函数优化问题,在原料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1