ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:939.38KB ,
资源ID:7163641      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7163641.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(精品基于单片机的电子密码锁的设计毕业论文任务书.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

精品基于单片机的电子密码锁的设计毕业论文任务书.docx

1、精品基于单片机的电子密码锁的设计毕业论文任务书中北大学信息商务学院课 程 设 计 说 明 书学 院: 信息商务学院 专 业: 电子信息工程 题 目:专业综合实践之单片机部分: 基于单片机的电子密码锁的设计指导教师: 职称: 教授 2014 年 1 月 10 日中北大学信息商务学院课程设计任务书学 院: 信息与通信工程学院 专 业: 电子信息工程 课程设计题目: 专业综合实践之单片机信息处理部分: 基于单片机的温度显示电路的设计 起 迄 日 期: 2013年12 月3 0 日2014年1月 10 日 课程设计地点: 5院楼 201,510 实验室 指 导 教 师: 王浩全 系 主 任: 王浩全

2、下达任务书日期: 2013 年 12 月30日课 程 设 计 任 务 书1设计目的:本课程设计主要针对电子信息工程专业课程体系设置的要求,安排的一种综合性的课程设计。一方面为了培养学生在查阅资料、复习、学习知识的基础上,进行包括机、电系统的设计、计算、仿真、编程、调试等多个环节的综合能力培养;另一方面,也是对学生进行毕业设计前的一次大型练兵,进一步培养学生独立地分析、解决实际问题的实际能力。另外还培养学生用专业的、简洁的文字,清晰的图表来表达自己设计思想的能力。2设计内容和要求(包括原始数据、技术参数、条件、设计要求等):单片机选用89C51检测范围-55-+125度-10-+85度范围内精度

3、为0.5度三位显示3设计工作任务及工作量的要求包括课程设计计算说明书(论文)、图纸、实物样品等:(1)提供核心器件的工作原理与应用介绍;(2)提供用Protel设计的电路原理图,印刷板电路图;(3)提供用Multisim、MaxPlus、Proteus、Medwin、KeilC等软件对电路的仿真、编程与分析;(4)提供符合规定要求的课程设计说明书;(5)提供参考文献不少于15篇,且必须是相关的参考文献; 课 程 设 计 任 务 书4主要参考文献: 要求按国标GB 771487文后参考文献著录规则书写,例:1 傅承义,陈运泰,祁贵中.地球物理学基础.北京:科学出版社,1985 (5篇以上)5设计

4、成果形式及要求:(1)电路原理图、程序、仿真结果、PCB图;(2)课程设计说明书;6工作计划及进度:2013年12月 30 日 2014年1 月 1 日:查阅资料;2014年:1 月 2 日 1 月 7 日:方案设计、实验验证;1 月 8 日 1 月 9 日:完成课程设计说明书; 1 月 10 日:答辩。系主任审查意见: 签字: 年 月 日设计说明书应包括以下主要内容: (1)封面:课程设计题目、班级、姓名、指导教师、时间 (2)设计任务书 (3)目录 (4)设计方案简介 (5)设计条件及主要参数表 (6)设计主要参数计算 (7)设计结果 (8)设计评述,设计者对本设计的评述及通过设计的收获体

5、会 (9)参考文献1前言.12设计任务及要求.1 2.1设计任务.1 3设计方案及器材选用分析.2 3.1设计总体方案.2 3.1.1方案的总体设计框图.3 3.2器材选用分析.3 3.2.1DS18B20温度传感器.3 3.2.2温度传感器原理图及PCB图.9 3.2.3温度传感器仿真程序.11 3.3软件流程图.15 3.3.1主程序.15 3.3.2读温子程序.16 3.3.3温度转换子程序.16 3.3.4计算温度子程序.174硬件电路的设计.17 4.1Protues软件介绍.17 4.1.1Protues软件.17 4.1.2主控制电路AT89C51原理图.18 4.2Protue

6、s进行仿真.194.2.1Protues仿真图.194.2.2 DS18B20显示程序.214.2.3PCB图及3D图.295总结.316参考文献.31 前言本次课程设计,就是用单片机实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。传统的温度计有反应速度慢、读数麻烦、测量精度不高、误差大等缺点而下面利用集成温度传感器AD590设计并制作了一款基于AT89C51的4位数码管显示的数字温度计,其电路简单,软硬件结构

7、模块化,易于实现。 该数字温度计利用AD590集成温度传感器及其接口电路完成温度的测量并转换成模拟电压信号,经由模数转换器ADC0804转换成单片机能够处理的数字信号,然后送到单片机AT89C51中进行处理变换,最后将温度值显示在D4、D3、D2、D1共4位七段码LED显示器上。系统以AT89C51单片机为控制核心,加上AD590测温电路、ADC模数转换电路、4位温度数据显示电路以及外围电源、时钟电路等组成。2设计任务及要求2.1设计任务本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。该数字温度计利用AD590集成温度传感器及其接口电路完成温度的测量并转换成模拟电压

8、信号,经由模数转换器ADC0804转换成单片机能够处理的数字信号,然后送到单片机AT89C51中进行处理变换,最后将温度值显示在D4、D3、D2、D1共4位七段码LED显示器上。系统以AT89C51单片机为控制核心,加上AD590测温电路、ADC模数转换电路、4位温度数据显示电路以及外围电源、时钟电路等组成。3课程设计方案及器材选用分析3.1设计总体方案本数字温度计设计采用智能温度传感器DS18B20作为检测元件,测温范围为-55C至+125C,最大分辨率可达0.0625C。DS18B20可以直接读出被测量的温度值,而采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。按照

9、系统设计功能的要求,确定系统由三个模块组成:主控制器STC89C51,温度传感器DS18B20,驱动显示电路。总体电路框图如下:3.1.1总体方案的设计框图温度计电路设计总体设计方框图如图3.2所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。DS18B20 采用3 脚PR-35 封装或8 脚SOIC 封装。主控制器:单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。显示电路:显示电路采用3位共阳LED数码管,从P3口RXD,TXD

10、串口输出段码。3.2器材选用分析3.2.1DS18B20温度传感器1. DS18B20的特点本设计的测温系统采用芯片DS18B20,DS18B20是DALLAS公司的最新单线数字温度传感器,它的体积更小,适用电压更宽,更经济。实现方法简介DS18B20采用外接电源方式工作,一线测温一线与STC89C51连接,测出的数据放在寄存器中,将数据经过BCD码转换后送到LED显示。 DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH和TL,高速暂存器。64位光刻ROM是出厂前被光刻好的,它可以看作是该DS18B20的地址序列号。不同的器件地址序列号不同。 6

11、4位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。温度报警触发器和,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。高速暂存RAM的结构为字节的存储器,结构如图2-3-2所示。头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。该字

12、节各位的定义如下图所示。低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和0决定温度转换的精度位数,来设置分辨率。图3.5 DS18B20的字节定义DS18B20高速暂存器共9个存存单元,如表所示:表3-1 DS18B20的引脚分布图序号 寄存器名称 作 用 序号 寄存器名称 0 温度低字节 以16位补码形式存放 4、5 保留字节1、2 1 温度高字节 6 计数器余值 2 TH用户字节1 存放温度上限 7 计数器 3 HL用户字节2 存放温度下限 8 CRC 以12位转化为例说明温度高低字节存放形式及计算:

13、12位转化后得到的12位数据,存储在18B20的两个高低两个8位的RAM中,二进制中的前面5位是符号位。如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625才能得到实际温度。 高8位 S S S S S 26 25 24 低8位 23 22 21 20 2-1 2-2 2-3 2-4 表3-2 DS18B20的字节存放表由下图可以看到,Dsl8820的内部存储器是由8个单元组成,其中第0、1个存放测量温度值,第2、3分别存放报警温度的上下限值,第4单元为配置单元,5、6、7单元在DSl8820这

14、里没有被用到。对于第4个寄存器,用户可以设置温度转换精度,系统默认12bit转换精度,相当于十进制的00625,其转换时间大约为750磷。具体见表2-4-1。图3.6 内部存储器结构图表3-3 温度精度配置R1R0转换精度(16进制)转换精度(十进制)转换时间009bit0.593.75ms0110bit0.25187.5ms1011bit0.125375ms1112bit0.0625750ms 由可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9

15、字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625LSB形式表示。当符号位S0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。表2-4-2是一部分温度值对应的二进制温度数据。表3-4 温度精度配置温度二进制表示十六进制表示+1250000 0111 1101

16、 000007D0H+850000 0101 0101 00000550H+25.06250000 0001 1001 00000191H+10.1250000 0000 1010 000100A2H+0.50000 0000 0000 00100008H00000 0000 0000 10000000H-0.51111 1111 1111 0000FFF8H-10.1251111 1111 0101 1110FF5EH-25.06251111 1110 0110 1111FE6FH-551111 1100 1001 0000FC90HDS18B20完成温度转换后,就把测得的温度值与RAM中的

17、TH、TL字节内容作比较。若TTH或TTL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多只DS18B20同时测量温度并进行报警搜索。在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。器件中还有一个计数门,当计数门打开时,DS18B

18、20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将55所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在55所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直

19、到温度寄存器值大致被测温度值。 另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作按协议进行。操作协议为:初使化DS18B20(发复位脉冲)发ROM功能命令发存储器操作命令处理数据。 由于DS18B20采用的“一线总线”结构,所以数据的传输与命令的通讯只要通过微处理器的一根双向Io口就可以实现。DSl8B20约定在每次通信前必须对其复位。 图3.7 复位时序图 本文中有AT89S52提供,tRSTL的最小时延为,然后释放总线,检查DSl8B20的返回信号,看其是否已准备接受其他操作,其中tPDHIGH时间最小为,最长不能超过

20、,否则认为DS18B20没有准备好,主机应继续复位,直到检测到返回信号变为低电平为止。表3-5 DS18B20的ROM操作指令操作指令33H55HCCHF0HECH含义读ROM匹配ROM跳过ROM搜索ROM报警搜索ROM表3-6 DS18B20的存储器操作指令操作指令4EHBEH48H44HD8HB4H含义写读内部复制温度转换重新调出读电源主机一旦检测到DS18B20的存在,根据DS18B2的工作协议,就应对ROM进行操作,接着对存储器操作,最后进行数据处理。在DS18B20中规定了5条对ROM的操作命令。主机在发送完ROM操作指令之后,就可以对DS18B20内部的存储器进行操作,同样DS18

21、B20规定了6条操作指令。 DS18B20的读、写时序图见图3.8。图3.8 DS18B20的读写时序图2. DS18B20的使用方法由于DS18B20采用的是1Wire总线协议方式,即在一根数据线实现数据的双向传输,而对AT89S51单片机来说,硬件上并不支持单总线协议,因此,我们必须采用软件的方法来模拟单总线的协议时序来完成对DS18B20芯片的访问。由于DS18B20是在一根IO线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20有严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线

22、器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。对于DS18B20的读时序分为读0时序和读1时序两个过程。对于DS18B20的读时隙是从主机把单总线拉低之后,在15秒之内就得释放单总线,以让DS18B20把数据传输到单总线上。DS18B20在完成一个读时序过程,至少需要60us才能完成。 DS18B20的写时序,对于DS18B20的写时序仍然分为写0时序和写1时序两个过程,对于DS18B20写0时序和写1时序的要求不同,当要写0时序时,单总线要被拉低至少60us,保证D

23、S18B20能够在15us到45us之间能够正确地采样IO总线上的“0”电平,当要写1时序时,单总线被拉低之后,在15us之内就得释放单线3.2.2温度传感器设计原理图及PCB图温度传感器仿真图温度传感器仿真PCB图3.2.3温度传感器仿真程序#include reg52.(value); void display(uchar num) uchar a,b; a=num10; b=num%10; P0=tablea; P2=0xfe; delay1(5); P2=0xff; delay1(5); P0=tableb; P2=0xfd; delay1(5); P2=0xff; delay1(5)

24、; uchar read_wen_du() uchar HB,LB,temp; init(); 复位 write(0xcc); 跳过ROM 即不必读64位序列号的ROM write(0x44); 启动温度转换 init(); write(0xcc); 跳过ROM 即不必读64位序列号的ROM write(0xbe); 读命令 LB=read(); 低八位 1011 1010 HB=read(); 高八位 1111 1010 HB=HB4; (LB&0xF0)=1011 0000 4 :0000 1011 +HB :1010 1011 temp=HB; return temp; 返回温度值 vo

25、id main() while(1) T=read_wen_du(); display(T); 3.3软件流程图系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。3.3.1主程序主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图7所示。3.3.2读温子程序读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。其程序流程图如图8示3.3.3温度转换子程序温度转换命令子程序主要是发温度转换开始命

26、令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。温度转换命令子程序流程图如上图,图3.14所示3.3.4计算温度子程序计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定,其程序流程图如图3.15所示4硬件电路的设计4.1Protues软件介绍4.1.1Protues软件Protel99 SE 5共分5个模块,分别是原理图设计、PCB设计(包含信号完整性分析)、自动布线器、原理图混合信号仿真、PLD设计。 以下介绍一些Protel99SE的部分最新功能: 可生成30多种格式的电气连接网络表; 强大的全局编辑功能; 在原理图中选择一级器件,PCB中同样的器件也将被选中; 同时运行原理图和PCB,在打开的原理图和PCB图间允许双向交叉查找元器件、引脚、网络 既可以进行正向注释元器件标号(由原理图到PCB),也可以进行反向注释(由PCB到原理图),以保持电气原理图和PCB在设计上的一致性; 满足国际

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1