1、FM信号的MATLAB仿真设计FM信号的MATLAB仿真设计课程设计报告题 目: FM信号的MATLAB仿真设计 学生姓名: 学生学号: 0908030101 系 别: 电气信息工程学院 专 业: 电子信息工程 届 别: 2013 指导教师: 信道,调制和解调系统的仿真目的。2 FM信号的MATLAB仿真设计方案制定 通信按照传统理解就是信息传输。通信系统的作用就是将信息从信息源发送到一个或多个目的地,且信息是多种多样的。通信系统对信号进行两种基本变换:第一、要把发送的消息要变换成原始电信号。第二、将原始电信号调制到频率较高的载频上,使其频带适合信道的输。解调后的信号称为基带信号,已调信号也称
2、为频带信号。对于任何一个通信系统,均可视为由发送端、信道和接收端三大部分组成。 图1通信系统组成信息源(简称信源)的作用是把各种信息转换成原始信号。根据消息的种类不同信源分为模拟信源和数字信源。发送设备的作用产生适合传输的信号,即使发送信号的特性和信道特性相匹配,具有抗噪声的能力,并且具有足够的功率满足原距离传输的需求。 信息源和发送设备统称为发送端。 发送端将信息直接转换得到的较低频率的原始电信号称为基带信号。通常基带信号不宜直接在信道中传输。因此,在通信系统的发送端需将基带信号的频谱搬移(调制)到适合信道传输的频率范围内进行传输。这就是调制的过程。 信号通过信道传输后,具有将信号放大和反变
3、换功能的接收端将已调制的信号搬移(解调)到原来的频率范围,这就是解调的过程。 信号在信道中传输的过程总会受到噪声的干扰,通信系统中没有传输信号时也有噪声,噪声永远存在于通信系统中。由于这样的噪声是叠加在信号上的,所以有时将其称为加性噪声。噪声对于信号的传输是有害的,它能使模拟信号失真。在本仿真的过程中我们假设信道为高斯白噪声信道。图2信号传输调制在通信系统中具有十分重要的作用。一方面,通过调制可以把基带信号的频谱搬移到所希望的位置上去,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号。另一方面,通过调制可以提高信号通过信道传输时的抗干扰能力,同时,它还和传输效率有关。不同的调制方
4、式产生的已调信号的带宽不同,因此调制影响传输带宽的利用率。可见,调制方式往往决定一个通信系统的性能。在本仿真的过程中我们选择用调频调制方法进行调制。在本仿真的过程中我们选择用同步解调方法进行解调3 FM信号的MATLAB仿真设计方案的设计3.1调制过程调制在通信系统中的作用至关重要。所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。广义的调制分为基带调制和带通调制。在无线通信中和其他大多数场合下,调制一词均指载波调制。载波调制,就是用调制信号去控制载波的参数过程,是载波的某一个或某几个参数按照调制信号的规律而变化。调制信号是指来自信源的消息信号,这些信号可以是模拟的,也可以是数字的。
5、未受调制的周期性振荡信号称为载波,它可以是正弦波,也可以是非正弦波为什么要进行载波调制呢?基带信号对载波的调制是为了实现下列一个或多个目标:第一,在无线传输中,信号是以电磁波的形式通过天线辐射到空间的。为了获得较高的辐射效率,天线的尺寸必须与发射信号波长想比拟。而基带信号包含的较低频率较长,致使天线过长而难以实现。第二,把多个基带信号分别搬移到不同的载波处,以实现信道的多路复用,提高信道利用率。第三,扩展信号带宽,提高系统抗干扰,抗衰落能力,还可实现传输带宽与信噪比之间的互换。因此,调制对通信系统的有效性和可靠性有着很大的作用和影响。采用什么样的调制方式将直接影响着通信系统的性能。信息源(简称
6、信源)的作用是把各种信息转换成原始信号。信息源和发送设备统称为发送端。在通信系统的发送端将基带信号的频谱搬移(调制)到适合信道传输的频率范围内进行传输。调频的方法主要由两种:直接调频和间接调频,本设计使用直接调频。调频就是用调制信号控制载波的频率变化,直接调频就是用调制信号直接去控制载波振荡器的频率,使其按调制信号的规律线性地变化。这种方法的主要优点是在实现线性调频的要求下,可以获得较大的频偏;主要缺点是频率稳定度不高。3.2解调过程解调是调制的逆过程,其作用是从接收的已调信号中恢复原基带信号。信号通过信道传输后,具有将信号放大和反变换功能的接收端将已调制的信号搬移(解调)到原来的频率范围。调
7、频信号的解调有相干解调和非相干解调两种。相干解调也叫同步检波。解调与调制的实质一样,军事频谱搬移。调制是把基带信号的频谱搬到了载波位置,这一过程可以通过一个相乘器与载波相乘来实现。解调则是调制的反过程,即把在载频位置的已调信号的频谱搬回到原始基带位置,因此同样可以用相乘器与载波相乘来实现。相干解调仅适用于窄带调频信号,且需同步信号,故应用范围受限;而非相干解调不需要同步信号,是FM系统的主要解调方式,本设计采用非相干解调。3.3噪声我们将信道中存在的不需要的电信号统称为噪声。通信系统中的噪声是叠加在信号上的,没有传输信号时通信系统中也有噪声,噪声永远存在于通信系统中。噪声可以看成是信道中的一种
8、干扰,也称为加性干扰,因为它是叠加在信号之上的。噪声对于信号的传输是有害的,它能使模拟信号失真,是数字信号发生错码,并限制着信息的传输速率。按照来源分类,噪声可以分为人为噪声和自然噪声两大类。人为噪声是有人类的活动产生的,自然噪声是自然界中存在的各种电磁波辐射,此外还有一种很重要的自然噪声,即热噪声。热噪声来自一切电子型元器件中电子的热运动。由于在一般的通信系统的工作频率范围内热噪声的频谱是均匀分布的,好像白光的频谱在可见光的频谱范围内均匀分布那样,所以热噪声又常称为白噪声。由于热噪声是由大量自由电子的运动产生的,其统计特性服从高斯分布,故常将热噪声称为高斯白噪声。在本仿真的过程中我们假设信道
9、为高斯白噪声信道。4 FM信号调制解调模型的建立与分析4.1 调制模型的建立与分析4.1.1 FM调制模型 m(t) Sfm(t) 图3 FM调制模型其中,为基带调制信号,设调制信号为设正弦载波为信号传输信道为高斯白噪声信道,其功率为。4.1.2调制过程分析在调制时,调制信号的频率去控制载波的频率的变化,载波的瞬时频偏随调制信号成正比例变化,即式中,为调频灵敏度()。这时相位偏移为则可得到调频信号为4.1.3调制程序%*调制*clear alldt=0.005; %设定步长 t=0:dt:3;am=5; %调制信号幅度fm=5; %调制信号频率mt=am*cos(2*pi*fm*t); %生成
10、调制信号j_mt(1)=0;for i=1:length(t)-1 %对调制信号求积分j_mt(i+1)=j_mt(i)+mt(i)*dt;endfc=40;ct=cos(2*pi*fc*t); %生成载波kf=10; %调频灵敏度sft=cos(2*pi*fc*t+kf*j_mt); %生成已调信号figure(1) %绘制图形subplot(3,1,1);plot(t,ct);xlabel(t);title(载波时域图);subplot(3,1,2);plot(t,mt);xlabel(t);title(调制信号时域图); subplot(3,1,3);plot(t,sft); xlabe
11、l(t);title(已调信号时域图);4.1.4调制图形 图4调制信号图形4.2 高斯白噪声热噪声来自一切电子型元器件中电子的热运动。由于在一般的通信系统的工作频率范围内热噪声的频谱是均匀分布的,好像白光的频谱在可见光的频谱范围内均匀分布那样,所以热噪声又常称为白噪声。由于热噪声是由大量自由电子的运动产生的,其统计特性服从高斯分布,故常将热噪声称为高斯白噪声。4.2.1 过程分析 设正弦波通过加性高斯白噪声信道后的信号为其中,白噪声的取值的概率分布服从高斯分布。MATLAB本身自带了标准高斯分布的内部函数。函数产生的随机序列服从均值为,方差的高斯分布。正弦波通过加性高斯白噪声信道后的信号为故
12、其有用信号功率为噪声功率为信噪比满足公式则可得到公式我们可以通过这个公式方便的设置高斯白噪声的方差。4.2.2程序%*高斯白噪声* sn=10; %设定信噪比 db=am2/(2*(10(sn/10); %计算高斯白噪声方差 n=sqrt(db)*randn(size(t); %生成高斯白噪声 nsfm=n+sft; %含高斯白噪声已调信号 figure(2) plot(t,nsfm); %绘制含高斯白噪声已调信号时域图 xlabel(t);title(含高斯白噪声已调信号时域图);4.2.3 含高斯白噪声的已调信号时域图图5含高斯白噪声的已调信号时域图4.3解调模型的建立与分析在本仿真的过程
13、中我们选择用非相干解调方法进行解调。4.3.1 FM解调模型4.3.2 解调过程分析输入调频信号为图6解调模型 设相干载波为乘法器的作用是把调频信号变成有多种频率的波的混合,乘法器输出为经低通滤波器后取出器低频分量为在经过微分器,即得出解调出的基带信号:相干解调可以恢复出原来的基带信号,而且要求本地载波与调制载波同步,否则会使解调信号失真。4.3.2 解调程序nsfm1=sft; %无噪声的已调信号 for i=1:length(t)-1 %信号通过微分器处理 diff_nsfm1(i)=(nsfm1(i+1)-nsfm1(i)./dt; end diff_nsfmn=abs(hilbert(
14、diff_nsfm1); %hilbert变换,求绝对值得到瞬时幅度(包络检波)zero=(max(diff_nsfmn)-min(diff_nsfmn)/2;diff_nsfmn1=diff_nsfmn-zero;figure(3)subplot(2,1,1);plot(t,nsfm1);xlabel(时间t);title(无噪声条件已调信号);subplot(2,1,2);plot(1:length(diff_nsfmn1)./1000,diff_nsfmn1./400,r);xlabel(时间t); title(无噪声条件下解调信号的时域图); %*有高斯噪声条件下的解调* nsfm=n
15、+sft; %含高斯白噪声已调信号for i=1:length(t)-1 %信号通过微分器处理 diff_nsfm2(i)=(nsfm(i+1)-nsfm(i)./dt; end diff_nsfmn2=abs(hilbert(diff_nsfm2); %hilbert变换,求绝对值得到瞬时幅度(包络检波)zero1=(max(diff_nsfmn2)-min(diff_nsfmn2)/2;diff_nsfmn3=diff_nsfmn-zero1;figure(4)subplot(2,1,1);plot(t,nsfm);xlabel(时间t);title(含高斯噪声已调信号);subplot(
16、2,1,2);plot(1:length(diff_nsfmn3)./1000,diff_nsfmn3./400,r);xlabel(时间t); title(含高斯噪声条件下解调信号的时域图);4.3.3解调图形图7无噪声解调图形图8有噪声解调图形课程设计程序%*%*FM调制*clear alldt=0.005; %设定步长 t=0:dt:3;am=5; %调制信号幅度fm=5; %调制信号频率mt=am*cos(2*pi*fm*t); %生成调制信号j_mt(1)=0;for i=1:length(t)-1 %对调制信号求积分j_mt(i+1)=j_mt(i)+mt(i)*dt;endfc=
17、40;ct=cos(2*pi*fc*t); %生成载波kf=10; %调频灵敏度sft=cos(2*pi*fc*t+kf*j_mt); %生成已调信号figure(1) %绘制图形subplot(3,1,1);plot(t,ct);xlabel(t);title(载波时域图);subplot(3,1,2);plot(t,mt);xlabel(t);title(调制信号时域图); subplot(3,1,3);plot(t,sft); xlabel(t);title(已调信号时域图); %* %*高斯白噪声* sn=30; %设定信噪比 db=am2/(2*(10(sn/10); %计算高斯白噪
18、声方差 n=sqrt(db)*randn(size(t); %生成高斯白噪声 nsfm=n+sft; %含高斯白噪声已调信号 figure(2) plot(t,nsfm); %绘制含高斯白噪声已调信号时域图 xlabel(t);title(含高斯白噪声已调信号时域图);%*%*FM解调* %*无噪声条件下的解调* nsfm1=sft; %无噪声的已调信号 for i=1:length(t)-1 %信号通过微分器处理 diff_nsfm1(i)=(nsfm1(i+1)-nsfm1(i)./dt; end diff_nsfmn=abs(hilbert(diff_nsfm1); %hilbert变换
19、,求绝对值得到瞬时幅度(包络检波)zero=(max(diff_nsfmn)-min(diff_nsfmn)/2;diff_nsfmn1=diff_nsfmn-zero;figure(3)subplot(2,1,1);plot(t,nsfm1);xlabel(时间t);title(无噪声条件已调信号);subplot(2,1,2);plot(1:length(diff_nsfmn1)./1000,diff_nsfmn1./400,r);xlabel(时间t); title(无噪声条件下解调信号的时域图); %*有高斯噪声条件下的解调* nsfm=n+sft; %含高斯白噪声已调信号for i=
20、1:length(t)-1 %信号通过微分器处理 diff_nsfm2(i)=(nsfm(i+1)-nsfm(i)./dt; end diff_nsfmn2=abs(hilbert(diff_nsfm2); %hilbert变换,求绝对值得到瞬时幅度(包络检波)zero1=(max(diff_nsfmn2)-min(diff_nsfmn2)/2;diff_nsfmn3=diff_nsfmn-zero1;figure(4)subplot(2,1,1);plot(t,nsfm);xlabel(时间t);title(含高斯噪声已调信号);subplot(2,1,2);plot(1:length(di
21、ff_nsfmn3)./1000,diff_nsfmn3./400,r);xlabel(时间t); title(含高斯噪声条件下解调信号的时域图);5总计5.1 设计小结确定了此次课程设计的题目后,仔细的回顾了以前所学的知识发现有好多不熟悉了。因此把通信系统和MATLAB,数字图像处理等书拿出来看了一遍,又到图书馆查阅了相关资料等到一切准备好以后开始了此次课程设计。5.2 收获体会我这次所做的课程设计是FM信号的MATLAB仿真设计,由于对课本知识的不熟悉使得有把书看了一遍浪费了时间,还有对MATLAB软件的使用不熟练。通过此次课程设计不仅对原来通信原理知识得到了巩固,而且还学会了许多原来不会
22、的东西,所以这次的课程设计对我的帮助很大。我将在以后的学习生活中继续保持这种严谨的态度,对MATLAB软件的使用也有了更深一步的了解与掌握,特别是如何对基带信号如何进行调制,解调,及加入噪声方面有了深入的了解。参考文献:1通信原理(第6版) 樊昌信 曹丽娜主编 清华大学出版社 2MATLAB程序设计与应用(第2版) 刘卫国主编 高等教育出版社3数字图像处理及MATLAB实现 杨杰主编 电子工业出版社4MATLAM7.0在数字信号处理中的应用 罗军辉主编 机械工业出版社5精通MATLAB R2011a 张志涌主编 北京航空航天大学出版社6通信原理(第3版) 周烔槃、 庞沁华、续大我等主编 北京邮
23、电大学出版社7国外电子与通信教材系列无线通信原理与应用(第2版) 拉帕波特、周文安(译者)、付秀花(译者)、王志辉等主编 电子工业出版社8Matlab Programming for Engineers 平装 Stephen Chapman主编 Nelson Engineering; International ed of 4th revised ed9 Essential Matlab for Engineers and Scientists, Fourth Edition 、Brian Hahn、 Dan Valen主编 Academic Press10 Matlab Frederic P. Miller、Agnes F. Vandome 、John McBrewster主编 Betascript Publishing
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1