ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:111.84KB ,
资源ID:7105503      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/7105503.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(表面肌实验报告.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

表面肌实验报告.docx

1、表面肌实验报告表面肌实验报告 武汉理工大学 现代数字信号处理在前沿学科中的应用实验报告 基于 sEMG时域特征的动作识别 学院:信息工程学院 学号:1049731503279 姓名:吴志勇 班级:电子 154 实验实验 基于基于 sEMG 时域特征特的动作识别时域特征特的动作识别 1、实验目的、实验目的 1.了解肌电信号常用的时域分析方法;2.利用 MATLAB对肌电信号进行去噪、特征提取及动作识别;2、实验设备、实验设备 1.Wi-Fi 表面肌电信号采集卡;2.32位 Windows XP 台式机(Matlab 7.0 软件);3.802.11b/g无线网卡;3、实验内容、实验内容(1)学习

2、信号的基本去噪方法,并用 MATLAB实现;(2)学习肌电信号常用的时域特征并利用 Matlab 来进行波形长度(WL)符号改变数(SSC)、过零点(ZC)、威尔逊赋值(WAMP)等特征的提取;(3)学习神经网络信号处理方法,掌握 BP 神经网络的用法,将其用于肌电信号的动作识别。学习以上三个部分,最终完成一整套肌电信号去噪、特征提取(选取一种特征)、基于特征的动作识别的 MATLAB程序。4、实验原理、实验原理(1)小波去噪 小波去噪方法是一种建立在小波变换基础上的新兴算法,基本思想是根据噪声在不同频带上的小波分解系数具有不同强度分布的特点,将各频带上的噪声对应的小系数去除,保留原始信号的小

3、波分解系数,然后对处理后系数进行小波重构,得到纯净信号。小波去噪的基本原理图如下 (2)特征提取 时域分析是将肌电信号看成均值为零,而方差随着信号强度的变化而变化的随机信号。时域特征的计算复杂度低,提取比较方便。最常用的方法有:方差,过零点数(Zero Crossing,ZC),Willison 幅值(Willison Amplitude,WAMP),绝对值平均值(Mean Absolute Value,MAV)和波形长度(Wave length,WL)等。在实际应用中,为了让特征可以包含更多的信息,往往选择用不同的时域特征组合形成联合特征向量。我们主要介绍一下几种方法:过零率(ZC):为波形

4、通过零线的次数,从一定程度上反映了信号的频率特性。为了降低零点引入的噪声,往往会引入一个阈值。计算方式如下:(1)Willison 幅值:是由 Willison 提出一种对表面肌电信号的幅值变化数量进行计算的方法,经过后人的研究,对 Willison 幅值的阈值有了明确的范围限定,目前认为 是最合适的阈值范围。其数学表示公式如公式(3-3)。(2)其中:波形长度(WL):它是对某一分析窗中的波形长度的统计,波长可以体现该样本的持续时间、幅值、频率的特征。(3)符号改变斜率(SSC):为信号的的频率性能提供了一些附加信息,对于 3个连续的采样点,给定阈值,通过下面的公式计算波峰波谷的个数。(4)

5、(3)神经网络 BP 神经网络又称误差反向传播(Back Propagation),它是一种多层的前向型神经网络。在 BP 网络中,信号是前向传播的,而误差是反向传播的。所谓的反向传播是指误差的调整过程是从最后的输出层依次向之前各层逐渐进行的。标准的 BP 网络采用梯度下降算法,与 Widrow-Hoff学习规则相似,网络权值沿着性能函数的梯度反向调整。前向型神经网络通常具有一个或多个由 sigmoid 神经元构成的隐层,以及一个由线性神经元构成的输出层。多个具有非线性传递函数的神经元层使得网络可以学习输入和输出之间的非线性关系,而线性输出层使得网络可以产生-1,+1之外的输出值。由两层神经元

6、构成的 BP 网络结构(1)BP 网络的训练算法 BP 算法 BP 算法沿着误差函数减小最快的方向,也就是梯度的反方向改变权值和偏差,这一点与线性网络的学习算法是一致的。BP 算法的迭代计算公式可以表示为:(1)其中,代表当前权值和偏差,代表迭代产生的下一次的权值与偏差,为当前误差函数的梯度,代表学习速率。有动量的梯度下降算法 标准的梯度下降法在调整权值时,仅仅按照当前时刻的负梯度方向进行调整,并没有考虑以前各次运算步骤中的梯度方向,因此新的样本对迭代过程影响太大,可能会导致训练过程中调整方向发生震荡,导致不稳定和收敛速度慢的问题,有动量的梯度下降算法则考虑了往前时刻的贡献,其权值迭代算法为:

7、(2)其中,分别表示 n时刻,n-1时刻的负梯度。由于加入了以前时刻梯度的贡献,相当于给迭代过程添加了一个低通滤波器,使得网络忽略误差曲面上细节特征,避免了陷入局部极小点的问题。共轭梯度算法 尽管标准的 BP 算法采用梯度下降算法,权值和偏差沿误差函数下降最快的方向调整,但却并不一定是收敛最快的算法。在改进的 BP 训练算法中,有一大类的算法称为共轭梯度算法。在这一类算法中,权值和偏差沿着共轭梯度方向进行调整,通常能够获得比标准的梯度算法更快的收敛速度。共轭梯度算法的第一次迭代都是从最陡下降的梯度方向开始。梯度向量为:(3)沿着此方向进行权值和偏差的调整,公式为:(4)下一次搜索方向则由前两次

8、搜索方向的共轭方向决定,表达式为:(5)对于系数 不同计算方法产生不同的共轭梯度算法。a)F-R 共轭梯度算法采取的系数确定方法为:(6)即本次迭代梯度相对于上一次迭代梯度的归一化值。b)P-R 共轭梯度算法采取的系数确定方法为:(7)即上次迭代梯度与本次迭代梯度的内积对本次梯度的归一化值。c)Scaled共轭梯度算法 到目前为止,讨论过的所有共轭梯度算法都需要在每一步迭代过程中对搜索方向进行计算,这样的计算量是比较大。对此 moller提出了 Scaled梯度搜索算法4,在每一步迭代过程中不计算搜索方向,以减少训练过程的计算量。其基本原理是利用下面介绍的 L-M 算法与共轭梯度法相结合产生的

9、。L-M 算法 L-M 算法其权值和阈值的更新过程为:(8)其中,e为期望输出与实际输出的误差;J 为误差对权值微分的 Jacobi 矩阵;为标量因子。如果训练成功,误差性能函数减小,那么就减小 的值;反之就减小其值。5、实验步骤、实验步骤(1)数据格式转换:N=4;%通道的个数 M=512;%每个通道的采样数 K=10;%每种类别所取的个数 P=6;%类别数 ClassPermode=10;%每类动作数据的个数 ClassNumber=6;%类别的个数 M=512;%每个样本点数据的个数 Channel=4;%通道的个数 Count=ClassPermode*ClassNumber*M;sa

10、mple_train=zeros(Count,Channel);%保存训练样本 sample_test=zeros(Count,Channel);%保存训练样本 for i=1:60 D=importdata(strcat(train2Data,num2str(i),.txt);sample=D.data;sample_train(i-1)*M+1:i*M),:)=sample(:,(2:5);%sample(:,(2:5);end for i=1:60 D=importdata(strcat(test2Data,num2str(i),.txt);sample=D.data;sample_te

11、st(i-1)*M+1:i*M),:)=sample(:,(2:5);end save sample_train sample_train save sample_test sample_test 程序运行后,会看到文件夹中多出了 sample_train 和 sample_test 两个.mat文件。(2)小波去噪及特征提取,选用 WAMP 特征的提取。load sample_test.mat;load sample_train.mat;%参数说明%Window=256;%分析窗口的长度 M=512;%采集数据时一个 data的样本数 Channel=4;%采集数据的通道数 Class=6;

12、%类别数 Number=10;%每个类别的个数 WinLap=64;%窗口移动的间隔 JudgeTime=Window/WinLap;%一个分析窗口需要移动的次数 8 Count=M*Number*Class/WinLap-Window/WinLap+1;%所有数据需要分析的次数 477 ClassCount=M*Number/WinLap-Window/WinLap+1;%一类数据需要的分析次数 77 GapCount=M*Number/WinLap;%训练样本两类动作之间的间隔 80 ClassOne=1;ClassTwo=2;ClassThree=3;ClassFour=4;ClassF

13、ive=5;ClassSix=6;%thr=0.2;%train 样本小波去噪%for i=1:Channel x=sample_train(:,i);thr,sorh,keepapp=ddencmp(den,wv,x);c,l=wavedec(x,3,db1);a3=appcoef(c,l,db1,3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);s4=wdencmp(gbl,c,l,db1,3,thr,sorh,keepapp);new_train(:,i)=s4;end figure(1)subplot(4,1,1);plo

14、t(sample_train(:,1),r);hold on;plot(new_train(:,1),b);legend(原始信号,去噪后信号);title(train 样本滤波前后信号对比);subplot(4,1,2);plot(sample_train(:,2),r);hold on;plot(new_train(:,2),b);subplot(4,1,3);plot(sample_train(:,3),r);hold on;plot(new_train(:,3),b);subplot(4,1,4);plot(sample_train(:,4),r);hold on;plot(new_t

15、rain(:,4),b);%trin 样本特征提取%Threshold=0.006;WAMP=zeros(Channel,Count);for c=1:Count for n=1:Channel for w=1:Window-1 if(abs(new_train(c-1)*WinLap+w,n)-new_train(c-1)*WinLap+w+1,n)Threshold)WAMP(n,c)=WAMP(n,c)+1;end end end end Feature_train=WAMP;%figure(3)%plot(Feature_train);%test 样本小波去噪%for i=1:Chan

16、nel x=sample_test(:,i);thr,sorh,keepapp=ddencmp(den,wv,x);c,l=wavedec(x,3,db1);a3=appcoef(c,l,db1,3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);s4=wdencmp(gbl,c,l,db1,3,thr,sorh,keepapp);new_test(:,i)=s4;end figure(2)subplot(4,1,1);plot(sample_test(:,1),r);hold on;plot(new_test(:,1),b);le

17、gend(原始信号,去噪后信号);title(test 样本滤波前后信号对比);subplot(4,1,2);plot(sample_test(:,2),r);hold on;plot(new_test(:,2),b);subplot(4,1,3);plot(sample_test(:,3),r);hold on;plot(new_test(:,3),b);subplot(4,1,4);plot(sample_test(:,4),r);hold on;plot(new_test(:,4),b);%test 样本特征提取%Threshold=0.006;WAMP=zeros(Channel,Co

18、unt);for c=1:Count for n=1:Channel for w=1:Window-1 if(abs(new_test(c-1)*WinLap+w,n)-new_test(c-1)*WinLap+w+1,n)Threshold)WAMP(n,c)=WAMP(n,c)+1;end end end end Feature_test=WAMP;save feature Feature_train Feature_test;train 样本和 test 样本滤波前后信号对比。(3)模式识别:clear all;close all;load feature.mat Gap=80;K=77

19、;Count=477;%共有 477组特征值 P=6;%6类动作 Feature=Feature_test;%统一接口 test=Feature_train;%统一接口 net1=newff(minmax(Feature),7,6,tansig,purelin,trainlm);%net=newff(A,B,C,trainFun)%参数:%A:一个 n 2 的矩阵,第 i 行元素为输入信号 xi 的最小值和最大值;%B:一个 k维行向量,其元素为网络中各层节点数;%C:一个 k维字符串行向量,每一分量为对应层神经元的激活函数;常用的有:%线性函数purelin,对数 S 形转移函数logsig

20、 双曲正切 S 形函数 tansig%trainFun:为学习规则采用的训练算法。也可以根据需要修改%设置训练的输出目标矩阵 ze1=zeros(1,Gap)+1;ze0=zeros(1,Gap);ze1_6=zeros(1,K)+1;ze0_6=zeros(1,K);t=ze1 ze0 ze0 ze0 ze0 ze0_6 ze0 ze1 ze0 ze0 ze0 ze0_6 ze0 ze0 ze1 ze0 ze0 ze0_6 ze0 ze0 ze0 ze1 ze0 ze0_6 ze0 ze0 ze0 ze0 ze1 ze0_6 ze0 ze0 ze0 ze0 ze0 ze1_6;%神经网络进行

21、训练 tic;net1.trainParam.show=200;net1.trainParam.epochs=10000;net1.trainParam.goal=0.1;net1.trainParam.lr=0.01;net1,tr=train(net1,Feature,t);Y=sim(net1,Feature);YS=sim(net1,test);toc;%一些重要的网络配置参数如下:%net.trainparam.goal:神经网络训练的目标误差%net.trainparam.show:显示中间结果的周期%net.trainparam.epochs :最大迭代次数%net.trainP

22、aram.lr:学习率%语法:net,tr =train(net,X,Y)%参数:%X:网络实际输入%Y:网络应有输出%tr:训练跟踪信息%Y1:网络实际输出%语法:Y=sim(net,X)%net:网络%X:输入给网络的 N矩阵,其中 K为网络输入个数,N为数据样本数%Y:输出矩阵 Q N,其中 Q为网络输出个数%判断输出结果为第几类 maxY=max(Y,1);for i=1:Count for j=1:P if(maxY(i)=Y(j,i)class(i)=j;end end end maxYS=max(YS,1);for i=1:Count for j=1:P if(maxYS(i)=

23、YS(j,i)class_test(i)=j;end end end T=Gap;%80 wrong=zeros(1,Count);for k=1:Gap if(class_test(k)=1)wrong(k)=wrong(k)+class_test(k);end if(class_test(k+T)=2)wrong(k+T)=wrong(k+T)+class_test(k+T);end if(class_test(k+2*T)=3)wrong(k+2*T)=wrong(k+2*T)+class_test(k+2*T);end if(class_test(k+3*T)=4)wrong(k+3*

24、T)=wrong(k+3*T)+class_test(k+3*T);end if(class_test(k+4*T)=5)wrong(k+4*T)=wrong(k+4*T)+class_test(k+4*T);end end for k=1:K if(class_test(k+5*T)=6)wrong(k+5*T)=wrong(k+5*T)+class_test(k+5*T);end end wrongall=sum(wrong);figure(1);i=1:Count;plot(i,class_test(i),ob);hold on;%stem(i,class(i),b);plot(i,wr

25、ong(i),or);legend(正确的类别,错误的类别);title(分类结果);accuracy=1-wrongall/Count%分类准确率%save best net1;识别结果如下图:分类结果图 分类准确率(67.51%)提高识别率的方法:改变 BP 网络隐含层节点数以及初始化各层之间的权值和阀值,可以提高最终的识别率。6、实验现象及结果分析、实验现象及结果分析 滤波过程之后可以看到信号幅值有了较为明显的变化,说明小波去噪对于处理肌电信号有显著的效果。可以通过不同的算法对去噪后的信号进行特征提取。识别过程中,由于网络的各层之间的权值和阈值是由系统随机分配,因此每次识别的结果都不同。7、总结、总结 经过这次实验,我学习到了现代数字信号处理在处理实际问题中的应用,表面肌电信号的相关知识,如肌电信号的去噪,特征提取以及 BP 神经网络的使用方法。并且学习到了利用 Matlab 对数据进行相关的处理。模式识别在许多领域都有着广泛的应用,通过这门实验课的学习,为我以后的科研学习打下了良好的基础。【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1