ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:224.28KB ,
资源ID:6937448      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6937448.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(史密斯圆图的详解.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

史密斯圆图的详解.docx

1、史密斯圆图的详解本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。 v_VyOQ a_; _V-US 在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 qNHS_ _1_ 7DzcfkP 在高频端,寄生元件(比如连线上的电感、板

2、层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 !Go(8_ _OpxVy _5, 有很多种阻抗匹配的方法,包括: mkU _w_v CcY_.8|HT_ 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软

3、件不可能预装在计算机上。 X_:_N 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ,_NO+5U_ 经验: 只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 *XH?_|SV_ 史密斯圆图: 本文要重点讨论的内容。 7eYwZap h_ph 3k_fR 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析

4、。 _bSz6O/_A/ tw_gU _ru 图1. 阻抗和史密斯圆图基础 g-_C_uXic yv3my a_S 图1. 阻抗和史密斯圆图基础R63_j_0 _WQi_M_m 基础知识 P2QHp_t 8 6L&u:o: 在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。 _|d%D_w_ tOs_pDPSXX 大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即: R o_-Mex2 Rs + jXs = RL - j

5、XL k_.lnG_5e_ 6eS#L2_1* siD_ Sm_ 图2. 表达式Rs + jXs = RL - jXL的等效图 q_x/;3V_ 图2. 表达式Rs + jXs = RL - jXL的等效图BV_!Ki_w 在这个条件下,从信号源到负载传输的能量最大。另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。史密斯圆图史密斯圆图 dTL_5-_ fsEzpUY:W 史密斯圆图是由很多圆周交织在一起的一个图。正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周

6、线读取并跟踪数据。 _Z1h_ g p_t_ 史密斯圆图是反射系数(伽马,以符号?表示)的极座标图。反射系数也可以从数学上定义为单端口散射参数,即s11。 UDc$ads qU_,cC=Qf 史密斯圆图是通过验证阻抗匹配的负载产生的。这里我们不直接考虑阻抗,而是用反射系数L,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时,L更加有用。 e|rg_;A_W w_zp? 我们知道反射系数定义为反射波电压与入射波电压之比: _Y; Y_cj; _4#_(ZNP_ 图3. 负载阻抗 #_$1_og= 图3. 负载阻抗_3loY _qeP Y2_RFrT 负载反射信号的强度取决

7、于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为: Ih_iGP_ |3_&_7_ 由于阻抗是复数,反射系数也是复数。 _QJWR_ 为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里Zo (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50、75、100和600。于是我们可以定义归一化的负载阻抗: !$_g+F(:(c hKlZ i!4_J 据此,将反射系数的公式重新写为: b_G_24_ _; UX 6d 从上式我们可以看到负载阻抗与其反射系数间的直接关系。但是这个关系式是一个复数,所以并不实用。我们可以把史密斯圆图当作上述方程的图形表示。 aj

8、 bt-c_E p=QG_rxB* 为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。 A_r_IhW _cg_j.e_ 首先,由方程2.3求解出: p8,0_lo L|o 7 1t| ,_sg)w 并且 :+ _,st&(E T 4|jzE_Cc_o B%_TXw#_| 经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。 7W_gIh_Q_ _x(rd$oZ_O $K+4C0wX_ 同样,2.19也是在复平面(r, i)上的圆的参数方程(x-a)2 + (y-b)2 = R2,它的圆心为(1, 1/x),半径1/x。 2T/%y_s=_ v

9、&p,Clt-2 更多细节参见下图 _7f_ap* J_/_ JRn 圆周上的点表示具有相同虚部x的阻抗。例如,x=1的圆以(1, 1)为圆心,半径为1。所有的圆(x为常数)都包括点(1, 0)。与实部圆周不同的是,x既可以是正数也可以是负数。这说明复平面下半部是其上半部的镜像。所有圆的圆心都在一条经过横轴上1点的垂直线上。 完成圆图为了完成史密斯圆图,我们将两簇圆周放在一起。可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交。若已知阻抗为r + jx,只需要找到对应于r和x的两个圆周的交点就可以得到相应的反射系数。 可互换性可互换性 G_1#Bb5q:_ 上述过程是可逆的,如果已知反射系数,

10、可以找到两个圆周的交点从而读取相应的r和x的值。过程如下: 5o_R_H f=)pc#&g 确定阻抗在史密斯圆图上的对应点 H0DAj&Kp 将阻抗转换为导纳 5_I8FD._i 找出等效的阻抗 )_5_GdvqA 找出与反射系数对应的元件值(尤其是匹配网络的元件 ) 推论因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。下面是一个用史密斯圆图表示的RF应用实例: yz2oS|_0 8F_M_sx_ 例: 已知特性阻抗为50,负载阻抗如下: H_yX4obX $L#Z_?76v Z1 = 100 + j50 Z2 = 75 -j100 Z3 = j200 Z4 = 15

11、0 l#vw_ L 15 Z5 = (开路) Z6 = 0 (短路) Z7 = 50 Z8 = 184 -j900 xZ _x9_l +_SA_0l 对上面的值进行归一化并标示在圆图中 /qhm9_4e3 U_nS p_ z1 = 2 + j z2 = 1.5 -j2 z3 = j4 z4 = 3 MoR_-8vn_J z5 = 8 z6 = 0 z7 = 1 z8 = 3.68 -j18S m2_ _* _. 2gJ?, 史密斯圆图上的点 m6Cd_J9 史密斯圆图上的点?_eVuz x 现在可以通过图5的圆图直接解出反射系数。画出阻抗点(等阻抗圆和等电抗圆的交点),只要读出它们在直角坐标水

12、平轴和垂直轴上的投影,就得到了反射系数的实部r和虚部 9o_xf)pjw_ rB_&jpQ_ 该范例中可能存在八种情况,在 所示史密斯圆图上可以直接得到对应的反射系数: 6_M v_R_ R _Hk_z9_p L1 = 0.4 + 0.2j L 2 = 0.51 - 0.4j L3 = 0.875 + 0.48j L4 = 0.5 2#A9D.- h_ L5 = 1 L6 = -1 L7 = 0 L8 = 0.96 - 0.1j _2gR_1*| 从X-Y轴直接读出反射系数的实部和虚部 _MG5Sn*_(C 从X-Y轴直接读出反射系数的实部和虚部用导纳表示史密斯圆图是用阻抗(电阻和电抗)建立的

13、。一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数。可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可。然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数。通常,利用导纳更容易处理并联元件。 *_|c_vx:GO cu_HsuP 我们知道,根据定义Y = 1/Z,Z = 1/Y。导纳的单位是姆欧或者-1 (早些时候导纳的单位是西门子或S)。并且,如果Z是复数,则Y也一定是复数。 %PQC9hUy$ _Sx_h$_E: 所以Y = G + jB (2.20),其中G叫作元件的“电导”,B称“电纳”。在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设

14、,可以得出:G = 1/R及B = 1/X,然而实际情况并非如此,这样计算会导致结果错误。 +_r_ 7_G xN_I 用导纳表示时,第一件要做的事?*橐换 ?y = Y/Yo,得出 y = g + jb。但是如何计算反射系数呢?通过下面的式子进行推导: y_RAb HG,c mu_(S_ 9 s%Z3Zj(,8( 结果是G的表达式符号与z相反,并有(y) = -(z). bte_e;3 &_iuc4 如果知道z,就能通过将的符号取反找到一个与(0,0)的距离相等但在反方向的点。围绕原点旋转180可以得到同样的结果 _KG_ 11 180度旋转后的结果_ c:(HUo# 当然,表面上看新的点好

15、像是一个不同的阻抗,实际上Z和1/Z表示的是同一个元件。(在史密斯圆图上,不同的值对应不同的点并具有不同的反射系数,依次类推)出现这种情况的原因是我们的图形本身是一个阻抗图,而新的点代表的是一个导纳。因此在圆图上读出的数值单位是姆欧。 _LJT+tb?K_ D_:f0W_ v_ 尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用。导纳圆图在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以复平面原点为中心旋转180后得到与之对应的导纳点。于是,将整个阻抗圆图旋转180就得到了导纳圆图。这种方法十分方便,它使我们不用建立一个新图。所有圆周的交点(等电导圆和等电纳圆)自然

16、出现在点(-1, 0)。使用导纳圆图,使得添加并联元件变得很容易。在数学上,导纳圆图由下面的公式构造: u&2T(xG i =QX_Lr+ y 7m3| 2_Qv 解这个方程 5RDXgyN k_W=g:_m 接下来,令方程3.3的实部和虚部相等,我们得到两个新的独立的关系: Vf_VKP9K _s8 S_w _ 从等式3.4,我们可以推导出下面的式子: $xL_R/_y r_K_ 9_ 它也是复平面 (r, i)上圆的参数方程(x-a)2 + (y-b)2 = R2 (方程3.12),以(-g/g+1, 0)为圆心,半径为1/(1+g)。 k1Cx_Q)XC 2 |l_mH_f 从等式3.5

17、,我们可以推导出下面的式子: mRVE pc2X )9_LlM2+_y S ykb_lP37 同样得到(x-a)2 + (y-b)2 = R2型的参数方程(方程3.17)。 求解等效阻抗当解决同时存在串联和并联元件的混合电路时,可以使用同一个史密斯圆图,在需要进行从z到y或从y到z的转换时将图形旋转。 l.tN q$3pS _Cu_HWO 考虑图8所示网络(其中的元件以Zo=50进行了归一化)。串联电抗(x)对电感元件而言为正数,对电容元件而言为负数。而电纳(b)对电容元件而言为正数,对电感元件而言为负数 82 Y_$*)( 图8. 一个多元件电路 cE7_xNZ;Bh *W()|-V3 &/

18、h/B/F 这个电路需要进行简化(见图9)。从最右边开始,有一个电阻和一个电感,数值都是1,我们可以在r1的圆周和I1的圆周的交点处得到一个串联等效点,即点A。下一个元件是并联元件,我们转到导纳圆图(将整个平面旋转180),此时需要将前面的那个点变成导纳,记为A。现在我们将平面旋转180,于是我们在导纳模式下加入并联元件,沿着电导圆逆时针方向(负值)移动距离0.3,得到点B。然后又是一个串联元件。现在我们再回到阻抗圆图。 _v?Q|; _ rD_Nz)x _) _*Xi= K! 图11. 阻抗已知而元件未知的典型电路 cy_A|6Ltg% _Xhtc00( m9G_yjrL 初看起来好像并不比

19、找到等效阻抗复杂。但是问题在于有无限种元件的组合都可以使匹配网络具有类似的效果,而且还需考虑其它因素(比如滤波器的结构类型、品质因数和有限的可选元件)。 ?%_P9_I Dk|_S_3 实现这一目标的方法是在史密斯圆图上不断增加串联和并联元件、直到得到我们想要的阻抗。从图形上看,就是找到一条途径来连接史密斯圆图上的点。同样,说明这种方法的最好办法是给出一个实例。 W+_BM|%| #9O _*_ 我们的目标是在60MHz工作频率下匹配源阻抗(ZS)和负载阻抗(ZL) (见图12)。网络结构已经确定为低通,L型(也可以把问题看作是如何使负载转变成数值等于ZS的阻抗,即ZS复共轭)。下面是解的过程

20、: 1QtT*zm$F Fzh%_#z_0 图12. 图11的网络,将其对应的点画在史密斯圆图上 4C_ke(G dG.s8r*?_M QW_6F24_ 要做的第一件事是将各阻抗值归一化。如果没有给出特性阻抗,选择一个与负载/信号源的数值在同一量级的阻抗值。假设 Zo为50。于是 zS = 0.5 -j0.3, z*S = 0.5 + j0.3, ZL = 2 -j0.5。 _ LD: w wH &|iFh_fo_ 下一步,在图上标出这两个点,A代表zL,D代表Z*S y:nUdT _i_9_6Pel 然后判别与负载连接的第一个元件(并联电容),先把zL转化为导纳,得到点A。 );kw fw)

21、 c?CwxI_b8 确定连接电容C后下一个点出现在圆弧上的位置。由于不知道C的值,所以我们不知道具体的位置,然而我们确实知道移动的方向。并联的电容应该在导纳圆图上沿顺时针方向移动、直到找到对应的数值,得到点B (导纳)。下一个元件是串联元件,所以必需把B转换到阻抗平面上去,得到B。B必需和D位于同一个电阻圆上。从图形上看,从A到D只有一条路径,但是如果要经过中间的B点(也就是B),就需要经过多次的尝试和检验。在找到点B和B后,我们就能够测量A到B和B到D的弧长,前者就是C的归一化电纳值,后者为L的归一化电抗值。A到B的弧长为b = 0.78,则B = 0.78 x Yo = 0.0156姆欧

22、。因为C = B,所以 C = B/ = B/(2 f) = 0.0156/(2 607) = 41.4pF。B到D的弧长为 x = 1.2,于是 X = 1.2 Zo = 60.由L = X, 得 L = X/ = X/(2 f) = 60/(2 607) = 159nH。 在拥有功能强大的软件和高速、高性能计算机的今天,人们会怀疑在解决电路基本问题的时候是否还需要这样一种基础和初级的方法。 sfQ#ieTxY _SxnIX/J 实际上,一个真正的工程师不仅应该拥有理论知识,更应该具有利用各种资源解决问题的能力。在程序中加入几个数字然后得出结果的确是件容易的事情,当问题的解十分复杂、并且不唯一时,让计算机作这样的工作尤其方便。然而,如果能够理解计算机的工作平台所使用的基本理论和原理,知道它们的由来,这样的工程师或设计者就能够成为更加全面和值得信赖的专家,得到的结果也更加可靠。 _6yy|V5_ m wl-_=在拥有功能强大的软件和高速、高性能计算机的今天,人们会怀疑在解决电路基本问题的时候是否还需要这样一种基础和初级的方法。 sfQ#ieTxY _SxnIX/J

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1