1、计量经济学李子奈第三版课后习题Eviews实验报告30页精选文档计量经济学实验报告实验一:EViews5.0软件安装及基本操作1.Eviews5.0的安装过程男人看完这些文章还没过隐吗?请速度看下面的男人推荐精彩文章 注:下载原文后点及连接进入,不下载无法观看少妇*女主播*玩车震,一晚17次*姿势诱人,原来是因为。(点此进入 男人必看)卖爆了,堪称装逼国产iPhone6顶极高配神机万众期待,顶级配置卖爆了!(苹果) 一夜七次郎从此不再是神话!娱乐圈只用不说的秘密.男人的加油站 | 一战到底,性福不停歇!用玛卡,还需要什么甜言蜜语!【警惕】千万别让你的情敌先吃了“玛卡”!否则宝马车都留不住她!那
2、些如花般娇艳的女人,都因为有个强壮男人的浇灌!(点此进入 男人必看)女人看完这些文章还没过隐吗?请速度看下面的女人推荐精彩文章 注:下载原文后点及连接进入,不下载无法观看养胸美胸比养脸更重要,女性朋友一定要知道男人厌倦女人身体的全过程,惊呆了!卖爆了!采用iphone6外观设计理念顶极高配神机万众期待,顶级配置卖爆了!TVS沿用劳力士经典款设计打造,顶级镶钻机械腕表官方活动价698元】限量1折抢大牌! 仅此一天全国货到付款!送自己送朋友送父母(孝敬父母首选)解压安装包,双击“Setup.exe”,选择安装路径进行安装;安装完毕后,复制“eviews5.0破解文件夹”下的“eviews5.reg
3、文件”和“eviews5.exe文件”到安装目录下;双击“Eviews5.reg”进行注册,安装完毕。2.基本操作(数据来源于李子奈版课后习题P61.12)运行Eviews,依次单击filenewwork fileunstructedobservation 31。命令栏中输入“data y gdp”,打开“y gdp”表,接下来将数据输入其中。做出“y gdp”的散点图,依次单击quickgraphscattergdp y。结果如下:开始进行LS回归:命令栏中输入“ls y c gdp”回车,即得到回归结果如下:Dependent Variable: YMethod: Least Square
4、sDate: 12/11/11 Time: 09:38Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-StatisticProb.C-10.3934186.05105-0.1207820.9047GDP0.0710320.0074069.5912490.0000R-squared0.760315Mean dependent var621.0548Adjusted R-squared0.752050S.D. dependent var619.5803S.E. of regression308.5175Akai
5、ke info criterion14.36377Sum squared resid2760308.Schwarz criterion14.45629Log likelihood-220.6385F-statistic91.99205Durbin-Watson stat1.570581Prob(F-statistic)0.000000回归方程为:Y = -10.39340931 + 0.07103165248*GDP对回归方程做检验:斜率项t值9.59大于t在5%显著水平下的检验值2.045,拒绝零假设;截距项t值0.121小于2.045,接受零假设。可决系数0.76,拟合较好,方程F检验值9
6、1.99通过F检验。下面进行预测:拓展工作空间:打开work file窗口,单击 ProcStructure,将End date的数据3132;确定预测值的起止日期:打开work file窗口,点击QuickSample,填入“1 32”。打开GDP数据表,在GDP的最下方填,按回车键。在出现的Equation界面,点击Forecast出现相应界面如下:双击YF,得到y32=593.3756,预测完毕。实验二:回归模型的建立与检验(数据来源于李子奈版课后习题P105.11)运行Eviews,依次单击filenewwork fileunstructedobservation 10。命令栏中输入“
7、data y x1 x2”,打开“y x1 x2”表,接下来将数据输入其中。开始进行LS回归:命令栏中输入“ls y c x1 x2”回车,即得到回归结果:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 10:17Sample: 1 10Included observations: 10VariableCoefficientStd. Errort-StatisticProb.C626.509340.1301015.611950.0000X1-9.7905703.197843-3.0616170.0183X20.028
8、6180.0058384.9020300.0017R-squared0.902218Mean dependent var670.3300Adjusted R-squared0.874281S.D. dependent var49.04504S.E. of regression17.38985Akaike info criterion8.792975Sum squared resid2116.847Schwarz criterion8.883751Log likelihood-40.96488F-statistic32.29408Durbin-Watson stat1.650804Prob(F-
9、statistic)0.000292估计方程:依次单击viewrepresentations,得到回归方程为: Y = 626.5092847 - 9.790570097*X1 + 0.02861815879*X2,参数估计完毕。直接查看结果计算得到随机干扰项的方差值为2116.847/(10-2-1)=309.55,可决系数为0.902,修正后的可决系数为0.874。F=32.2945%显著水平下的F值4.74,即方程通过F检验;两个参数的t检验值均通过了5%显著水平下的t检验值2.365。下面进行预测:拓展工作空间:打开work file窗口,单击 ProcStructure,将End d
10、ate的数据1011;确定预测值的起止日期:打开work file窗口,点击QuickSample,填入“1 11”。在x1的最下方填入35,在x2的最下方填入20000,按回车键。在出现的Equation界面,点击Forecast出现相应界面如下:双击YF,得到y11=856.2025,预测完毕。实验三:异方差、自相关、多重共线性的检验1.异方差检验(数据来源于李子奈版课后习题P154.8)运行Eviews,依次单击filenewwork fileunstructedobservation 20。命令栏中输入“data y x”,打开“y x”表,接下来将数据输入其中。开始进行LS回归,命令
11、栏中输入“ls y c x”回车,即得到回归结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 10:38Sample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C272.3635159.67731.7057130.1053X0.7551250.02331632.386900.0000R-squared0.983129Mean dependent var5199.515Adjusted R-squared
12、0.982192S.D. dependent var1625.275S.E. of regression216.8900Akaike info criterion13.69130Sum squared resid846743.0Schwarz criterion13.79087Log likelihood-134.9130F-statistic1048.912Durbin-Watson stat2.087986Prob(F-statistic)0.000000回归方程为:Y = 272.3635389 + 0.7551249391*X开始检验异方差图示法:在工作文件窗口按Genr,在主窗口键入
13、命令e2=resid2,依次单击QuickGraphScatter可得散点图:显然,散点不在一条水平直线上,即说明存在异方差性。White检验法:依次单击ViewResidual TestsWhite Heteroskedasticity因为本题为一元函数,故无交叉乘积项,选no cross terms。经估计出现white检验结果,如下图:White Heteroskedasticity Test:F-statistic14.63595Probability0.000201Obs*R-squared12.65213Probability0.001789Test Equation:Depend
14、ent Variable: RESID2Method: Least SquaresDate: 12/11/11 Time: 11:16Sample: 1 20Included observations: 20VariableCoefficientStd. Errort-StatisticProb.C-180998.9103318.2-1.7518580.0978X49.4284628.939291.7080060.1058X2-0.0021150.001847-1.1447420.2682R-squared0.632606Mean dependent var42337.15Adjusted R
15、-squared0.589384S.D. dependent var45279.67S.E. of regression29014.92Akaike info criterion23.52649Sum squared resid1.43E+10Schwarz criterion23.67585Log likelihood-232.2649F-statistic14.63595Durbin-Watson stat2.081758Prob(F-statistic)0.000201所以拒绝原假设,表明模型存在异方差。 Goldfeld-Quanadt检验法:在命令栏中直接输入:sort x,得到按照
16、升序排列的x。开始取样本,依次单击quicksample,填入“1 8”,回归模型ls y c x;得到如下结果:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 11:26Sample: 1 8Included observations: 8VariableCoefficientStd. Errort-StatisticProb.C1277.1611540.6040.8290000.4388X0.5541260.3114321.7792870.1255R-squared0.345397Mean dependent v
17、ar4016.814Adjusted R-squared0.236296S.D. dependent var166.1712S.E. of regression145.2172Akaike info criterion13.00666Sum squared resid126528.3Schwarz criterion13.02652Log likelihood-50.02663F-statistic3.165861Durbin-Watson stat3.004532Prob(F-statistic)0.125501继续取样本,依次单击quicksample,填入“13 20”,回归模型ls y
18、 c x;得到如下结果:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 11:28Sample: 13 20Included observations: 8VariableCoefficientStd. Errort-StatisticProb.C212.2118530.88920.3997290.7032X0.7618930.06034812.625050.0000R-squared0.963723Mean dependent var6760.477Adjusted R-squared0.957676S.D. de
19、pendent var1556.814S.E. of regression320.2790Akaike info criterion14.58858Sum squared resid615472.0Schwarz criterion14.60844Log likelihood-56.35432F-statistic159.3919Durbin-Watson stat1.722960Prob(F-statistic)0.000015计算F统计量:F=RSS2/RSS1=615472.0/126528.3=4.864;F=4.864 F0.05(6,6)=4.28,拒绝原假设,表明模型确实存在异方
20、差性。异方差的修正:在对原模型进行OLS后,单击QuickGenerate Series,在弹出的对话框内输w1=1/e,w2=1/e2。再选择QuickEstimate Equation,在弹出的对话框中选择Options按钮,在出现的画面中,选中Weight Ls/TLS复选框,在 Weight内分别输入“w1”,“w2”,分别得下图:Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 11:33Sample: 1 20Included observations: 20Weighting series: W1Vari
21、ableCoefficientStd. Errort-StatisticProb.C415.6603116.97913.5532880.0023X0.7290260.02242932.503490.0000Weighted StatisticsR-squared0.999895Mean dependent var4471.606Adjusted R-squared0.999889S.D. dependent var7313.160S.E. of regression77.04831Akaike info criterion11.62138Sum squared resid106856.0Sch
22、warz criterion11.72096Log likelihood-114.2138F-statistic1056.477Durbin-Watson stat2.367808Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.981664Mean dependent var5199.515Adjusted R-squared0.980645S.D. dependent var1625.275S.E. of regression226.1101Sum squared resid920263.9Durbin-Watson stat
23、1.886959Dependent Variable: YMethod: Least SquaresDate: 12/11/11 Time: 11:34Sample: 1 20Included observations: 20Weighting series: W2VariableCoefficientStd. Errort-StatisticProb.C117.0597134.71860.8689200.3963X0.7869760.02605830.200730.0000Weighted StatisticsR-squared0.999999Mean dependent var4207.5
24、16Adjusted R-squared0.999999S.D. dependent var15774.21S.E. of regression15.35992Akaike info criterion8.396039Sum squared resid4246.688Schwarz criterion8.495613Log likelihood-81.96039F-statistic912.0839Durbin-Watson stat2.113659Prob(F-statistic)0.000000Unweighted StatisticsR-squared0.980281Mean depen
25、dent var5199.515Adjusted R-squared0.979185S.D. dependent var1625.275S.E. of regression234.4844Sum squared resid989692.9Durbin-Watson stat1.836717经估计发现用w2=1/e2作为合适的权。再检验:单击QuickGenerate Series,分别输入x1=x*w2,y1=y*w2,按住ctrl,依次点击x1,y1,右键选择Open as group,依次单击QuickGraph可得下图:由该图可知,加权后X和Y的散点图在同一直线上,所以是同方差性。2.自相关检验(数据来源于李子奈版课后习题P155.9)运行Eviews,依次单击filenewwork fileAnnualstrat1980 end2007。命令栏中输入“data y x”,打开
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1