ImageVerifierCode 换一换
格式:DOCX , 页数:18 ,大小:229.24KB ,
资源ID:6822914      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6822914.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(单片机课程设计报告.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

单片机课程设计报告.docx

1、单片机课程设计报告单片机原理与接口技术课程设计学 院: 电气信息学院 题 目: 数字式温度计 年级专业: 14级测控1班 学 号: 1404200223 学生姓名: 孙鑫 指导教师: 郝毫毫 摘要1一、引言2二、总体方案设计3三、系统硬件选择51、单片机的选择52 89C51 引脚功能介绍: 63、温度传感器的选择8四硬件电路设计10 1温度检测电路112显示电路12五、系统软件设计131概述132主程序流程图133C语言程序14六、调试与仿真22七、设计体会25摘要:随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于

2、89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。关键词

3、:单片机;温度检测;AT89C51;DS18B20;一、引言随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。测量温度的关键是温度传感器,温度传感器的发

4、展经历了三个发展阶段:传统的分立式温度传感器模拟集成温度传感器智能集成温度传感器。目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方

5、法,并对以此传感器,89C51单片机为控制器构成的数字温度测量装置的工作原理及程序设计作了详细的介绍。与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。该设计控制器使用ATMEL公司的AT89C51单片机,测温传感器使用DALLAS公司DS18B20,用液晶来实现温度显示。二、系统方案采用数字温度芯片DS18B20 测量温度,输出信号全数字化。便于单片机处理及控制,省去传统的测温方法的很多外围电路。且该芯片的物理化学性很稳定,它能用做工业测温元件,此元件线形较好。在0100 摄氏度时,最大线形偏差小于1 摄氏度。

6、DS18B20 的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89C51构成的温度测量装置,它直接输出温度的数字信号,可直接与计算机连接。这样,测温系统的结构就比较简单,体积也不大。采用51 单片机控制,软件编程的自由度大,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便。既可以单独对多DS18B20控制工作,还可以与PC 机通信上传数据,另外AT89S51 在工业控制上也有着广泛的应用,编程技术及外围功能电路的配合使用都很成熟。该系统利用AT89C51芯片控制温度传感器DS18B20进行实时温度检测并显示,能够实现快速测量环境温度

7、,并可以根据需要设定上下限报警温度。该系统扩展性非常强,它可以在设计中加入时钟芯片DS1302以获取时间数据,在数据处理同时显示时间,并可以利用AT24C16芯片作为存储器件,以此来对某些时间点的温度数据进行存储,利用键盘来进行调时和温度查询,获得的数据可以通过MAX232芯片与计算机的RS232接口进行串口通信,方便的采集和整理时间温度数据。系统框图如图 3.3所示图 3.3 DS18B20温度测温系统框图三、系统器件选择3.1、 单片机的选择对于单片机的选择,可以考虑使用8031与8051系列,由于8031没有内部RAM,系统又需要大量内存存储数据,因而不适用。AT89C51 是美国 AT

8、MEL 公司生产的低功耗,高性能 CMOS8 位单片机,片内含 4kbytes 的可编程的 Flash 只读程序存储器,兼容标准 8051 指令系统及引脚。它集 Flash 程序存储器既可在线编程(ISP),也可用传统方法进行编程,所以低价位 AT89C51单片机可为提供许多高性价比的应用场合,可灵活应用于各种控制领域,对于简单的测温系统已经足够。单片机AT89C51 具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。主要特性如下图所示:AT89C51单片机引脚如图-1所示与MCS-51 兼容4K字节可编程闪烁存储

9、器寿命:1000写/擦循环数据保留时间:10年全静态工作:0Hz-24Hz三级程序存储器锁定128*8位内部RAM32可编程I/O线两个16位定时器/计数器5个中断源 可编程串行通道 低功耗的闲置和掉电模式片内振荡器和时钟电路 3.2 89C51 引脚功能介绍: AT89C51 单片机为40 引脚双列直插式封装,其引脚排列和逻辑符号如图-1 所示:各引脚功能简单介绍如下:VCC:供电电压 GND:接地 P0口:P0口为一个8位漏级开路双向I/O口,每个管脚可吸收8TTL门电流。当P1口的管脚写“1”时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FLA

10、SH编程时,P0口作为原码输入口,当FLASH进行校验时,P0输出原码,此时P0外部电位必须被拉高。P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入“1”后,电位被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚电位被内部上拉电阻拉高,且作为输入。作为输入时,P2口的管脚电位被外部拉低,将输出电流,这是由于内部上拉的缘故。

11、P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉的优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入时,由于外部下拉为低电平,P3口将输出电流(ILL),也是由于上拉的缘故。P3口也可作为AT89C51的一些特殊功能口:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2

12、INT0(外部中断0)P3.3 INT1(外部中断1)P3.4 T0(记时器0外部输入)P3.5 T1(记时器1外部输入)P3.6 WR (外部数据存储器写选通)P3.7 RD (外部数据存储器读选通)同时P3口同时为闪烁编程和编程校验接收一些控制信号。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高平时间。ALE / PROG :当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是

13、:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令时ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。PSEN:外部程序存储器的选通信号。在由外部程序存储器取址期间,每个机器周期PSEN两次有效。但在访问内部部数据存储器时,这两次有效的PSEN信号将不出现。EA/VPP:当EA保持低电平时,访问外部ROM;注意加密方式1时,EA将内部锁定为RESET;当EA端保持高电平时,访问内部ROM。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。XTAL1:

14、反向振荡放大器的输入及内部时钟工作电路的输入。XTAL2:来自反向振荡器的输出。3.3、温度传感器的选择3.3.1. DS18B20 简单介绍:DALLAS 最新单线数字温度传感器DS18B20是一种新型的“一线器件”,其体积更小、更适用于多种场合、且适用电压更宽、更经济。DALLAS 半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。温度测量范围为-55+125 摄氏度,可编程为9位12 位转换精度,测温分辨率可达0.0625摄氏度,分辨率设定参数以及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。被测温度用符号扩展的16位数字量方式串行输出

15、;其工作电源既可以在远端引入,也可以采用寄生电源方式产生;多个DS18B20可以并联到3 根或2 根线上,CPU只需一根端口线就能与诸多DS18B20 通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计,十分方便。DS18B20 的性能特点如下:独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集

16、成在形如一只三极管的集成电路内适应电压范围更宽,电压范围:3.05.5V,在寄生电源方式下可由数据线供电温范围55125,在-10+85时精度为0.5零待机功耗可编程的分辨率为912位,对应的可分辨温度分别为0.5、0.25、0.125和0.0625,可实现高精度测温在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快测量结果直接输出数字温度信号,以一线总线串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作以上特点使DS18B20非常适用与多点、远距离

17、温度检测系统。DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列、各种封装形式如图 4.2 所示,DQ 为数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源;GND为地信号;VDD为可选择的VDD引脚。当工作于寄生电源时,此引脚必须接地。其电路图 4.3所示.。 图 4.2 外部封装形式 图4.3 传感器电路图3.3.2 DS18B20使用中的注意事项DS18B20 虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:DS1

18、8B20 从测温结束到将温度值转换成数字量需要一定的转换时间,这是必须保证的,不然会出现转换错误的现象,使温度输出总是显示85。在实际使用中发现,应使电源电压保持在5V 左右,若电源电压过低,会使所测得的温度精度降低。较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。在DS18B20的有关资料中均未提及单总线上所挂DS18B20 数量问题,容易使人误认为可以挂任意多个DS18B20

19、,在实际应用中并非如此,当单总线上所挂DS18B20 超过8 个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。在DS18B20测温程序设计中,向DS18B20 发出温度转换命令后,程序总要等待DS18B20的返回信号,一旦某个DS18B20 接触不好或断线,当程序读该DS18B20 时,将没有返回信号,程序进入死循环,这一点在进行DS18B20硬件连接和软件设计时也要给予一定的重视。四.硬件电路设计本设计由DS18B20温度传感器芯片测量当前的温度并将转换后的结果送入单片机。然后通过A89C51单片机驱动两位共阳极8段LED数码管显示测量温度值。如附录中本设计

20、硬件电路图所示,本电路主要有DS18B20温度传感器芯片,两位共阳极数码管,AT89C51单片机及相应外围电路组成。其中DS18B20采用“一线制”与单片机相连。4.1、温度检测电路DS18B20 最大的特点是单总线数据传输方式,DS18B20 的数据I/O 均由同一条线来完成。DS18B20 的电源供电方式有2 种: 外部供电方式和寄生电源方式。工作于寄生电源方式时, VDD 和GND 均接地, 他在需要远程温度探测和空间受限的场合特别有用, 原理是当1 W ire 总线的信号线DQ 为高电平时, 窃取信号能量给DS18B20 供电, 同时一部分能量给内部电容充电, 当DQ为低电平时释放能量

21、为DS18B20 供电。但寄生电源方式需要强上拉电路, 软件控制变得复杂(特别是在完成温度转换和拷贝数据到E2PROM 时) , 同时芯片的性能也有所降低。外部电源供电方式是DS18B20最佳的工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统。因此本设计采用外部供电方式。温度传感器DS18B20的测量范围为-55+125,在-10+85时精度为0.5。因为本设计只用于测量环境温度,所以只显示0+85。 4.2、显示电路 本设计显示电路采用两位共阳极LED数码管来显示测量得到的温度值。LED数码管能在低电压下工作,而且体积小、重量轻、使用寿命长,因次

22、本设计选用此数码管作为显示器件。 一个LED数码管只能显示一位的字符,如果字符位数不止一位,可以用几个数码管组成,但要控制多位的显示电路需要有字段控制和字位控制,字段控制是指控制所要显示的字符是什么,控制电路应将字符的七段码通过输出口连接到LED的ag引脚,是某些段点亮,某些段处于熄灭状态。字位控制是指控制在多位显示器中,哪几位发光或那几位不发光,字位控制则需要通过字位码作用于LED数码管的公共引脚,是某一位或某几位的数码管可以发光。数码管显示电路分为动态显示和静态显示。 静态显示方式是指每一个数码管的字段控制是独立的,每一个数码管都需要配置一个8位输出口来输出该字位的七段码。因此需要显示多位

23、时需要多个输出口,通常片内并口不够用,需要在片外扩展。 动态显示又称为扫描显示方式,也就是在某一时刻只能让一个字位处于选通状态,其他字位一律断开,同时在字段线上发出该位要显示的字段码,这样在某一时刻某一位数码管就会被点亮,并显示出相应的字符。下一时刻改变所显示的字位和字段码,点亮另一个数码管,显示另一个字符。绕后一次扫描轮流点亮其他数码管,只要扫描速度快,利用人眼的视觉残留效应,会使人感觉到几位数码管都在稳定的显示。 本设计采用数码管动态显示,电路如下图所示(protues仿真复位电路和晶振电路均可省略):部分电路 图-6五、系统软件设计5.1、 概述整个系统的功能是由硬件电路配合软件来实现的

24、,当硬件基本定型后,软件的功能也就基本定下来了。从软件的功能不同可分为两大类:一是监控软件(主程序),它是整个控制系统的核心,专门用来协调各执行模块和操作者的关系。二是执行软件(子程序),它是用来完成各种实质性的功能如测量、计算、显示、通讯等。每一个执行软件也就是一个小的功能执行模块。这里将各执行模块一一列出,并为每一个执行模块进行功能定义和接口定义。各执行模块规划好后,就可以规划监控程序了。首先要根据系统的总体功能选择一种最合适的监控程序结构,然后根据实时性的要求,合理地安排监控软件和各执行模块之间地调度关系。5.2总程序流程图5.3C语言程序/*主函数*/#include #include

25、 #include void main() while(1) T=read_wen_du(); display(T); /*自定义头文件*/#ifndef _MYDEFINE_H_#define _MYDEFINE_H_#define uchar unsigned char /声明#define uint unsigned intsbit DQ=P27; /定义ds18b20输出接口void delay1(uint z) ; void delay(uint N);void init();void write(uchar date);uchar read();void display(uchar num);uchar read_wen_du();#endif/*子程序*/温度传感器部分:ds18b20.c#include #include #include /*延时函数*/void delay1(uint z) uint x,y; for(x=z;x0;x-) for(y=110;y0;y-);void delay(uint N)/廷迟时间为(24+N*16)us int i; for(i=0;iN;i+);/* *初始化*/void init() DQ=1; delay(0); DQ=0; delay(50); /廷迟24+50*16=824u

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1