ImageVerifierCode 换一换
格式:DOCX , 页数:24 ,大小:91.08KB ,
资源ID:6822813      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6822813.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(动量与动量守恒定律期末复习讲义.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

动量与动量守恒定律期末复习讲义.docx

1、动量与动量守恒定律期末复习讲义动量与动量守恒定律期末复习讲义第1节动量定理【概念公式定理】基础不牢地动山摇一、动量1定义:物体的质量和速度的乘积。2表达式:p。3单位:kgm/s。4标矢性:动量是矢量,其方向和速度方向相同。二、动量定理1.冲量(1)定义:力和力的作用时间的乘积。(2)表达式:IFt。(3)单位:Ns。(4)标矢性:冲量是矢量,恒力冲量的方向与力的方向相同。2动量定理(1)内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。(2)表达式:Ftmvmv。深化理解1动量变化量也是矢量,其方向与速度变化量的方向相同。2力与物体运动方向垂直时,该力不做功,但该力的冲量不

2、为零。3某个力的冲量与物体的运动状态及其是否受其他力无关。4动量定理是矢量方程,列方程时应选取正方向,且力和速度必须选同一正方向。【题型考法技巧】重点难点厘清能力大增考点一动量与冲量的理解1对动量的理解下列关于动量的说法正确的是()A质量大的物体动量一定大 B速度大的物体动量一定大C两物体动能相等,动量不一定相等 D两物体动能相等,动量一定相等2. 冲量的基本计算质量为60 kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来。已知弹性安全带的缓冲时间1.2 s,安全带长5 m,g取10 m/s2,则安全带所受的平均冲力的大小为()A.500 N B.1 100 N C.600

3、N D.100 N3动量变化量的大小计算(多选)质量为m的物体以初速度v0开始做平抛运动,经过时间t,下降的高度为h,速度变为v,在这段时间内物体动量变化量的大小为()Am(vv0) BmgtCm Dm老师点评1动能、动量、动量变化量的比较动能动量动量变化量定义物体由于运动而具有的能量物体的质量和速度的乘积物体末动量与初动量的矢量差定义式Ekmv2pmvppp标矢性标量矢量矢量特点状态量状态量过程量关联方程Ek,Ekpv,p,p联系(1)都是相对量,与参考系的选取有关,通常选取地面为参考系(2)若物体的动能发生变化,则动量一定也发生变化;但动量发生变化时动能不一定发生变化2冲量的计算(1)恒力

4、的冲量:直接用定义式IFt计算。(2)变力的冲量方向不变的变力的冲量,若力的大小随时间均匀变化,即力为时间的一次函数,则力F在某段时间t内的冲量It,其中F1、F2为该段时间内初、末两时刻力的大小。作出Ft变化图线,图线与t轴所夹的面积即为变力的冲量。如图所示。对于易确定始、末时刻动量的情况,可用动量定理求解,即通过求p间接求出冲量。考点二动量定理的理解和应用1应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间t越短,力F就越大,力的作用时间t越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。(2)当作用力F一定时,力的作用时间t越长,动量变化量p越大,力

5、的作用时间t越短,动量变化量p越小。2应用动量定理解题的一般步骤(1)确定研究对象。中学阶段的动量定理问题,其研究对象一般仅限于单个物体。(2)对物体进行受力分析。可以先求每个力的冲量,再求各力冲量的矢量和;或先求合力,再求其冲量。(3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正、负号。(4)根据动量定理列方程,如有必要还需要其他补充方程,最后代入数据求解。对过程较复杂的运动,可分段用动量定理,也可整个过程用动量定理。典例“蹦床”已成为奥运会的比赛项目。质量为m的运动员从床垫正上方h1高处自由落下,落垫后反弹的高度为h2,设运动员每次与床垫接触的时间为t,求在运动员与床垫接触的时间

6、内运动员对床垫的平均作用力。(空气阻力不计,重力加速度为g)延伸思考(1)床垫对运动员的冲量是多少?(2)如果运动员不是落在床垫上,而是落在水泥地面上,运动员所受的平均冲力表达式相同吗?实际结果有区别吗?1应用动量定理解释生活现象玻璃杯从同一高度落下,掉在石头上比掉在草地上容易碎,这是由于在玻璃杯与石头的撞击过程中()A玻璃杯的动量较大 B玻璃杯受到的冲量较大C玻璃杯的动量变化较大 D玻璃杯的动量变化较快2应用动量定理求变力的冲量如图所示,一轻质弹簧固定在墙上,一个质量为m的木块以速度v0从右侧沿光滑水平面向左运动并与弹簧发生相互作用。设相互作用的过程中弹簧始终在弹性限度范围内,那么,在整个相

7、互作用的过程中弹簧对木块冲量I的大小和弹簧对木块做的功W分别是()AI0,Wmv02 BImv0,Wmv02CI2mv0,W0 DI2mv0,Wmv023应用动量定理计算平均力在水平地面的右端B处有一面墙,一小物块放在水平地面上的A点,质量m0.5 kg,AB间距离s5 m,如图所示。小物块以初速度v08 m/s从A向B运动,刚要与墙壁碰撞时的速度v17 m/s,碰撞后以速度v26 m/s反向弹回。重力加速度g取10 m/s2。求:(1)小物块从A向B运动过程中的加速度a的大小;(2)小物块与地面间的动摩擦因数;(3)若碰撞时间t0.05 s,碰撞过程中墙面对小物块平均作用力F的大小。【盲点短

8、板妙法】清障补短高人一点(选讲)巧用微元法结合动量定理解决流体及微粒两类“柱状模型”问题例1(2016全国卷)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中。为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。忽略空气阻力。已知水的密度为,重力加速度大小为g。求(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度。例2宇宙飞船在飞行过程中有很多技术问题需要解决,其中之一就是当飞船进入宇宙微粒尘区时如何保持速度不变的

9、问题。假设一宇宙飞船以v2.0103 m/s的速度进入密度2.0106 kg/m3的微粒尘区,飞船垂直于运动方向上的最大截面积S5 m2,且认为微粒与飞船相碰后都附着在飞船上,则飞船要保持速度v不变,所需推力多大?第2节动量守恒定律【概念公式定理】基础不牢地动山摇一、动量守恒定律1内容:如果一个系统不受外力,或者所受外力的矢量和为,这个系统的总动量保持不变。注12表达式:m1v1m2v2m1v1m2v2。3适用条件(1)理想守恒:不受外力或所受外力的合力为0。(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。注2(3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统

10、在该方向上动量守恒。二、碰撞、反冲、爆炸1碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。(2)分类弹性碰撞:碰撞后系统的总动能没有损失。注3非弹性碰撞:碰撞后系统的总动能损失。完全非弹性碰撞:碰撞后合为一体,机械能损失最大。2爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。3反冲 注4(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。【注解释疑】注1 外力和内力是相对的,与研究对象的选取有关。注2 外

11、力的冲量在相互作用的时间内忽略不计。注3 弹性碰撞是一种理想化的物理模型,在宏观世界中不存在。注4 反冲运动和爆炸问题中,系统的机械能可以增大,这与碰撞问题是不同的。深化理解1动量守恒方程为矢量方程,列方程时必须选择正方向。2动量守恒方程中的速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的速度。3碰撞、爆炸、反冲均因作用时间极短,内力远大于外力满足动量守恒(或近似守恒),但系统动能的变化是不同的。4“人船”模型适用于初状态系统内物体均静止,物体运动时满足系统动量守恒或某个方向上系统动量守恒的情形。【题型考法技巧】重点难点厘清能力大增考点一动量守恒定律的理解及应用1动量守恒定律的

12、五个特性矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(一般是相对于地面)同时性动量是一个瞬时量,表达式中的p1、p2、必须是系统中各物体在相互作用前同一时刻的动量,p1、p2、必须是系统中各物体在相互作用后同一时刻的动量系统性研究的对象是相互作用的两个或多个物体组成的系统普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统2应用动量守恒定律的解题步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒)。(3)规定正

13、方向,确定初、末状态动量。(4)由动量守恒定律列出方程。(5)代入数据,求出结果,必要时讨论说明。典例如图所示,质量为m245 g的物块(可视为质点)放在质量为M0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为0.4。质量为m05 g的子弹以速度v0300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2。子弹射入后,求:(1)子弹进入物块后子弹和物块一起向右滑行的最大速度v1。(2)木板向右滑行的最大速度v2。(3)物块在木板上滑行的时间t。延伸思考(1)子弹射入物块并留在其中(时间极短),其中的含义是什么?(2)足够长的木板会使子弹、物块

14、、木板的运动有怎样的结果?(3)当木板的速度v板1 m/s时,子弹和物块的速度v物是多大?在此过程中物块相对于木板滑行了多远?1系统动量守恒的判断(多选)如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接。一个质量也为m的小球从槽上高h处由静止开始自由下滑,下列判断正确的是()A在下滑过程中,小球和槽之间的相互作用力对槽不做功B在下滑过程中,小球和槽组成的系统水平方向动量守恒C被弹簧反弹后,小球和槽都做速率不变的直线运动D被弹簧反弹后,小球能回到槽上高h处2“人船”模型的应用如图所示,质量m60 kg的人,站在质量M300 kg的车的一端,车长L3

15、 m,相对于地面静止。当车与地面间的摩擦可以忽略不计时,人由车的一端走到另一端的过程中,车将()A后退0.5 m B后退0.6 mC后退0.75 m D一直匀速后退3动量守恒中的临界极值问题如图所示,甲车质量m120 kg,车上有质量M50 kg的人,甲车(连同车上的人)以v3 m/s的速度向右滑行。此时质量m250 kg的乙车正以v01.8 m/s的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上。求人跳出甲车的水平速度u(相对地面)应当在什么范围以内才能避免两车相撞?(不计地面和小车间的摩擦,设乙车足够长,g取10 m/s2)考点二动量守恒定律的3个应用实例实例(一

16、)碰撞1碰撞现象满足的规律(1)动量守恒。(2)动能不增加。(3)速度要合理:若两物体同向运动,则碰前应有v后v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前v后。若两物体相向运动,碰后两物体的运动方向不可能都不改变。2物体的碰撞是否为弹性碰撞的判断弹性碰撞是碰撞过程中无机械能损失的碰撞,遵循的规律是动量守恒定律和机械能守恒定律,确切地说是碰撞前后系统动量守恒,动能不变。(1)题目中明确告诉物体间的碰撞是弹性碰撞。(2)题目中明确告诉是弹性小球、光滑钢球或分子(原子等微观粒子)碰撞的,都是弹性碰撞。例1如图所示,小球B与一轻质弹簧相连,并静止在足够长的光滑水平面上,小球A

17、以某一速度与轻质弹簧正碰小球A与弹簧分开后,小球B的速度为v,求:(1)当两个小球与弹簧组成的系统动能最小时,小球B的速度的大小;(2)若小球B的质量m2已知,在小球A与弹簧相互作用的整个过程中,小球A受到弹簧作用力的冲量实例(二)爆炸例2如图所示,A、B质量分别为m11 kg,m22 kg,置于小车C上,小车的质量为m31 kg,A、B与小车间的动摩擦因数为0.5,小车静止在光滑的水平面上。A、B间夹有少量炸药,某时刻炸药爆炸,若A、B间炸药爆炸的能量有12 J转化为A、B的机械能,其余能量转化为内能。A、B始终在小车表面水平运动,小车足够长,求:(1)炸开后A、B获得的速度大小;(2)A在

18、小车上滑行的时间是多少?【延伸思考】1.在运动过程中,小车的最大速度是多少?2.小车的最短长度是多少?实例(三)反冲例3(多选)如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,小车总质量为M;质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩。开始时小车AB和木块C都静止,当突然烧断细绳时,C被释放,使C离开弹簧向B端冲去,并跟B端油泥粘在一起。忽略一切摩擦,以下说法正确的是()A弹簧伸长过程中C向右运动,同时AB也向右运动BC与B碰前,C与AB的速率之比为MmCC与油泥粘在一起后,AB立即停止运动DC与油泥粘在一起后,AB继续向右运动1反冲问题(2017全国

19、卷)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A30 kgm/s B5.7102 kgm/sC6.0102 kgm/s D6.3102 kgm/s2. 碰撞问题如图所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()AA和B都向左运动 BA和B都向右运动CA静止,B向右运动 DA向左运动,B向右运动3爆炸问题(2018全国

20、卷)一质量为m的烟花弹获得动能E后,从地面竖直升空。当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动。爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量。求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度。考点三动量与能量的综合应用1解决力学问题的三个基本观点动力学观点运用牛顿定律结合运动学知识解题,可处理匀变速运动问题能量观点用动能定理和能量守恒观点解题,可处理非匀变速运动问题动量观点用动量守恒观点解题,可处理非匀变速运动问题2动量定理与牛顿第二定律的比较(1)牛

21、顿第二定律揭示了力的瞬时效应,在研究某一物体所受力的瞬时作用与物体运动的关系时,或者物体受恒力作用,且直接涉及物体运动过程中的加速度问题时,应采用动力学观点。(2)动量定理反映了力对时间的累积效应,适用于不涉及物体运动过程中的加速度、位移,而涉及运动时间的问题,特别对冲击类问题,因时间短且冲力随时间变化,应采用动量定理求解。3动量守恒定律和机械能守恒定律的比较动量守恒定律机械能守恒定律内容一个系统不受外力或所受合外力为零时,系统的总动量保持不变只有重力或弹力做功的系统,动能与势能可以相互转化,总的机械能保持不变表达式(1)m1v1m2v2m1v1m2v2(2)p1p2(3)p0(1)EkEpE

22、kEp(2)EkEp(3)EA增EB减守恒条件(1)系统不受外力或所受合外力为零(2)内力远远大于外力(3)系统所受合外力不为零,但某一方向合外力为零(该方向上动量守恒)(1)只受重力或弹力作用(2)有重力或弹力以外的力作用,但是这些力不做功(3)有重力或弹力以外的力做功,但是这些力做功的代数和为零研究对象相互作用的物体系统相互作用的系统(包括地球)守恒性质矢量守恒(规定正方向)标量守恒(不考虑方向性) 典例如图所示,一根劲度系数为k的轻质弹簧竖直放置,上下两端各固定一质量为M的物体A和B(均视为质点),物体B置于水平地面上,整个装置处于静止状态,一个质量m1M的小球P从物体A正上方距其高h处

23、由静止自由下落,与物体A发生碰撞(碰撞时间极短),碰后A和P粘在一起共同运动,不计空气阻力,重力加速度为g。(1)求碰撞后瞬间P与A的共同速度大小;(2)当地面对物体B的弹力恰好为零时,求P和A的共同速度大小;1动量守恒与动量定理的综合所谓对接是指两艘以几乎同样快慢同向运行的宇宙飞船在太空中互相靠近,最后连接在一起。假设“天舟一号”和“天宫二号”的质量分别为M、m,两者对接前的在轨速度分别为vv、v,对接持续时间为t,则在对接过程中“天舟一号”对“天宫二号”的平均作用力大小为()A BC D02动量守恒与机械能守恒的综合(多选)如图所示,A、B的质量分别为m、2m,物体B置于水平面上,B物体上

24、部半圆形槽的半径为R。将小球A从半圆槽右侧顶端由静止释放,不计一切摩擦。则()AA能到达半圆槽的左侧最高点BA运动到半圆槽的最低点时A的速率为 CA运动到半圆槽的最低点时B的速率为 DB向右运动的最大距离为3动量守恒定律与牛顿运动定律的综合(2018全国卷)汽车A在水平冰雪路面上行驶。驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B。两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m。已知A和B的质量分别为2.0103 kg和1.5103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚

25、动,重力加速度大小g10 m/s2。求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小。【盲点短板妙法】清障补短高人一点(选讲)探究4类常见“碰撞”模型的解法模型(一)多体碰撞或多次碰撞模型例1如图所示,B、C、D、E、F 5个小球并排放置在光滑的水平面上,B、C、D、E 4个球质量相等,而F球质量小于B球质量,A球质量等于F球质量。A球以速度v0向B球运动,所发生的碰撞均为弹性碰撞,则碰撞之后()A3个小球静止,3个小球运动B4个小球静止,2个小球运动C5个小球静止,1个小球运动D6个小球都运动模型(二)包含弹簧的碰撞模型例2如图所示,光滑水平地面上有一小车,车上有固定的

26、光滑斜面和连有轻弹簧的挡板,弹簧处于原长状态,自由端恰在C点,小车(包括光滑斜面和连有弹簧的挡板)总质量为M2 kg.物块从斜面上A点由静止滑下,经过B点时无能量损失已知物块的质量m1 kg,A点到B点的竖直高度为h1.8 m,BC的长度为L3 m,BD段光滑g取10 m/s2.求在运动过程中:(1)弹簧弹性势能的最大值;(2)物块第二次到达C点的速度【延伸思考】若取消小车左边的竖直墙,物块还是从A点下滑,弹簧的弹性势能最大值是多少?模型(三)子弹打木块模型例3如图所示,一质量m10.45 kg的平板小车静止在光滑的水平轨道上。车顶右端放一质量m20.5 kg的小物块,小物块可视为质点,小物块

27、与小车上表面之间的动摩擦因数0.5。现有一质量m00.05 kg的子弹以v0100 m/s的水平速度射中小车左端,并留在车中,子弹与车相互作用时间很短。g取10 m/s2,求:(1)子弹刚刚射入小车时,小车的速度大小v1;(2)要使小物块不脱离小车,小车的长度至少为多少?模型(四)小球与曲面体的“碰撞”模型例4在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,与物块间的动摩擦因数为,滑块CD上表面是光滑的圆弧,其始端D点切线水平且与木板AB上表面相平,它们紧靠在一起,如图所示。一可视为质点的物块P,质量也为m,从木板AB的右端以初速度v0滑上木板AB,过B点时速度为,又滑

28、上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处,求:(1)物块P滑到B处时木板AB的速度vAB;(2)滑块CD圆弧的半径R。动量与动量守恒定律期末复习讲义答案第1节动量定理【题型考法技巧】重点难点厘清能力大增考点一动量与冲量的理解1.C 2. B 3. BCD考点二动量定理的理解和应用典例:解析设运动员下降h1刚接触床垫的速度大小为v1,则离开床垫的速度大小为v2,由机械能守恒定律得mv12mgh1mv22mgh2设时间t内,床垫对运动员的平均作用力为F,取向上为正方向,由动量定理得(Fmg)tmv2(mv1)以上三式联立可得Fmg再由牛顿第三定律得,运动员对床垫的作用力为FFmg,方向竖

29、直向下。【延伸思考】:(1)床垫对运动员的冲量IFtm()mgt。(2)运动员所受的平均冲力表达式相同,但因落在水泥地面上时,作用时间t明显减小,故运动员所受平均冲力明显增大,容易受到伤害。1. D 2. C 3. 解析:(1)从A到B过程是匀减速直线运动,根据速度位移公式,有:a m/s21.5 m/s2。所以加速度的大小为1.5 m/s2。(2)从A到B过程,由动能定理,有:mgsmv12mv02代入数据解得:0.15。(3)对碰撞过程,规定向左为正方向,由动量定理,有:Ftmv2m(v1)可得:F130 N。【盲点短板妙法】清障补短高人一点(选讲)巧用微元法结合动量定理解决流体及微粒两类“柱状模型”问题 例1.解析(1)设t时间内,从喷口喷出的水的体积为V,质量为m,则m

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1