ImageVerifierCode 换一换
格式:DOCX , 页数:48 ,大小:56.92KB ,
资源ID:6801301      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6801301.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学高手必记公式及证明.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数学高手必记公式及证明.docx

1、数学高手必记公式及证明梅涅劳斯定理 梅涅劳斯定理证明梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)(BD/DC)(CE/EA)=1。 或:设X、Y、Z分别在ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)= 证明一:过点A作AGBC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。 三式相乘得:(AF/FB)(BD/DC)(CE/EA)=(AG/B

2、D)(BD/DC)(DC/AG)=1 证明二:过点C作CPDF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FBBD/DCCE/EA=AF/FBFB/PFPF/AF=1 它的逆定理也成立:若有三点F、D、E分别在ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)(BD/DC)(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。 梅涅劳斯(Menelaus)定理证明三:过ABC三点向三边引垂线AABBCC, 所以AD:DB=AA:BB,BE:EC=BB:CC,CF:FA=CC:AA 所以(AF/FB)(BD/DC)(CE/EA)=1

3、证明四:连接BF。 (AD:DB)(BE:EC)(CF:FA) =(SADF:SBDF)(SBEF:SCEF)(SBCF:SBAF) =(SADF:SBDF)(SBDF:SCDF)(SCDF:SADF) =1 此外,用定比分点定义该定理可使其容易理解和记忆: 在ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是=BL/LC、=CM/MA、=AN/NB。于是L、M、N三点共线的充要条件是=1。 第一角元形式的梅涅劳斯定理 如图:若E,F,D三点共线,则 (sinACF/sinFCB)(sinBAD/sinDAC)(sinCBA/sinABE)=1 即图中的蓝角正弦值之积等于红

4、角正弦值之积 该形式的梅涅劳斯定理也很实用 第二角元形式的梅涅劳斯定理 在平面上任取一点O,且EDF共线,则(sinAOF/sinFOB)(sinBOD/sinDOC)(sinCOA/sinAOE)=1。(O不与点A、B、C重合)塞瓦定理塞瓦定理 在ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介 ()本题可利用梅涅劳斯定理证明: ADC被直线BOE所截, (CB/BD)*(DO/OA)*(AE/EC)=1 而由ABD被直线COF所截, (BC/CD)*(DO/OA)*(AF/FB)=1 :即得:(BD/DC)*

5、(CE/EA)*(AF/FB)=1 ()也可以利用面积关系证明 BD/DC=SABD/SACD=SBOD/SCOD=(SABD-SBOD)/(SACD-SCOD)=SAOB/SAOC 同理 CE/EA=SBOC/ SAOB AF/FB=SAOC/SBOC 得BD/DC*CE/EA*AF/FB=1 利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=(CD*ctgA)/(CD*ctgB)*(AE*ctgB)/(AE*ctgC)*(BF*ctgC)/(BF*ctgA)=1,所以三条高CD

6、、AE、BF交于一点。 可用塞瓦定理证明的其他定理; 三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1 且因为AF=BF 所以 AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 此外,可用定比分点来定义塞瓦定理: 在ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是=BL/LC、=CM/MA、=AN/NB。于是AL、BM、CN三线交于一点的充要条件是=1。(注意与梅涅劳斯定理相区分,那里是=-1) 塞瓦定理推论1.设E是ABD内任意一点,AE、BE、DE分别交对边于C、

7、G、F,则(BD/BC)*(CE/AE)*(GA/DG)=1 因为(BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理)所以 (BD/CD)*(CE/AE)*(AF/FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数)又由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1 所以(BD/BC)*(CE/AE)*(GA/DG)=1 2.塞瓦定理角元形式 AD,BE,CF交于一点的充分必要条件是: (sinBAD/sinDAC)*(sinACF/sinFCB)*(sinCBE/sinEBA)=1 由正弦定理及三角形面积公式易证 3.

8、如图,对于圆周上顺次6点A,B,C,D,E,F,直线AD,BE,CF交于一点的充分必要条件是: (AB/BC)*(CD/DE)*(EF/FA)=1 由塞瓦定理的角元形式,正弦定理及圆弦长与所对圆周角关系易证。 4.还能利用塞瓦定理证三角形三条高交于一点 设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定 理,因为(AD:DB)*(BE:EC)*(CF:FA)=(CD*ctgA)/(CD*ctgB)*(AE*ctgB)/(AE*ctgC)*(BF*ctgC)/(AE*ctgB)=1,所以三条高CD、AE、BF交于一点。 托勒密定理 百科名片定理图定理的内容 托勒密(Ptolemy)定

9、理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。 原文:圆的内接四边形中,两对角线所包矩形的面积等于 一组对边所包矩形的面积与另一组对边所包矩形的面积之和。 从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质 证明一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在任意四边形ABCD中,作ABE使BAE=CAD ABE= ACD 因为ABEACD 所以 BE/CD=AB/AC,即BEAC=ABCD (1) 而BAC=DAE,ACB=ADE 所以ABCAED相似. BC/ED=AC/AD即EDAC=BCAD (2) (1)+(2)

10、,得 AC(BE+ED)=ABCD+ADBC 又因为BE+EDBD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 所以命题得证 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。 首先注意到复数恒等式: (a ? b)(c ? d) + (a ? d)(b ? c) = (a ? c)(b ? d) ,两边取模,运用三角不等式得。 等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。

11、 四点不限于同一平面。 平面上,托勒密不等式是三角不等式的反演形式。 二、 设ABCD是圆内接四边形。 在弦BC上,圆周角BAC = BDC,而在AB上,ADB = ACB。 在AC上取一点K,使得ABK = CBD; 因为ABK + CBK = ABC = CBD + ABD,所以CBK = ABD。 因此ABK与DBC相似,同理也有ABD KBC。 因此AK/AB = CD/BD,且CK/BC = DA/BD; 因此AKBD = ABCD,且CKBD = BCDA; 两式相加,得(AK+CK)BD = ABCD + BCDA; 但AK+CK = AC,因此ACBD = ABCD + BCD

12、A。证毕。 三、 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和)已知:圆内接四边形ABCD,求证:ACBDABCDADBC 证明:如图1,过C作CP交BD于P,使1=2,又3=4,ACDBCP得AC:BC=AD:BP,ACBP=ADBC 。又ACB=DCP,5=6,ACBDCP得AC:CD=AB:DP,ACDP=ABCD 。得 AC(BPDP)=ABCDADBC即ACBD=ABCDADBC 推论1.任意凸四边形ABCD,必有ACBDABCD+ADBC,当且仅当ABCD四点共圆时取等号。 2.托勒

13、密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、 推广托勒密不等式:四边形的任两组对边乘积不小于另外一组对边的乘积,取等号当且仅当共圆或共线。 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模, 得不等式ACBD|(a-b)(c-d)|+|(b-c)(a-d)|=ABCD+BCAD 注意: 1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 2.四点不限于同一平面。 欧拉定理:在一条线段上AD上,顺次标有B、C两点,则ADBC+ABCD=

14、ACBD欧拉公式 (1)分式里的欧拉公式ar/(a-b)(a-c)+br/(b-c)(b-a)+cr/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c (2)复变函数论里的欧拉公式eix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 eix=cosx+isinx的证明: 因为ex=1+x/1!+x2/2!+x3/3!+x4/4!+ cos x=1-x2/2!+x4/4!-x6/6! sin x=x-x3/3!+x5/5!-x7/7! 在ex的

15、展开式中把x换成ix.(i)2=-1, (i)3=?i, (i)4=1 eix=1x/1!-x2/2!+x3/3!?x4/4! =(1-x2/2!+)i(x-x3/3!) 所以eix=cosxisinx 将公式里的x换成-x,得到: e-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(eix-e-ix)/(2i),cosx=(eix+e-ix)/2.这两个也叫做欧拉公式。将eix=cosx+isinx中的x取作就得到: ei+1=0. 这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率,两

16、个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。 (3)三角形中的欧拉公式设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d2=R2-2Rr (4)拓扑学里的欧拉公式V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。 如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。 X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不

17、会改变的量,是拓扑学研究的范围。 在多面体中的运用: 简单多面体的顶点数V、面数F及棱数E间有关系 V+F-E=2 这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。 (5)初等数论里的欧拉公式欧拉函数:(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。 欧拉证明了下面这个式子: 如果n的标准素因子分解式是p1a1*p2a2*pmam,其中众pj(j=1,2,m)都是素数,而且两两不等。则有 (n)=n(1-1/p1)(1-1/p2)(1-1/pm) 利用容斥原理可以证明它。 西姆松定理 百科名片西姆松定理图示西姆松定理是一个几何定理。表述为:过三角形外接

18、圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。 西姆松定理说明相关的结果有: (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。 (4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 证明证明一: ABC外接圆上有点P,且PEAC于E,PFAB于F,PDBC于D,分别连D

19、E、DF. 易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于是FDP=ACP ,(都是ABP的补角) 且PDE=PCE 而ACP+PCE=180 FDP+PDE=180 即F、D、E共线. 反之,当F、D、E共线时,由可见A、B、P、C共圆. 证明二: 如图,若L、M、N三点共线,连结BP,CP,则因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和 M、P、L、C分别四点共圆,有 PBN = PLN = PLM = PCM. 故A、B、P、C四点共圆。 若A、B、P、C四点共圆,则PBN = PCM。因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L

20、、N和M、P、L、C四点共圆,有 PBN =PLN =PCM=PLM. 故L、M、N三点共线。 相关性质的证明连AH延长线交圆于G, 连PG交西姆松线与R,BC于Q 如图连其他相关线段 AHBC,PFBC=AG/PF=1=2 A.G.C.P共圆=2=3 PEAC,PFBC=P.E.F.C共圆=3=4 =1=4 PFBC =PR=RQ BHAC,AHBC=5=6 A.B.G.C共圆=6=7 =5=7 AGBC=BC垂直平分GH =8=2=4 8+9=90,10+4=90=9=10 =HQ/DF =PM=MH 第二个问,平分点在九点圆上,如图:设O,G,H 分别为三角形ABC的外心,重心和垂心。

21、则O是,确定九点圆的中点三角形XYZ的垂心,而G还是它的重心。 那么三角形XYZ的外心 O1, 也在同一直线上,并且 HG/GO=GO/GO1=2,所以O1是OH的中点。 三角形ABC和三角形XYZ位似,那么它们的外接圆也位似。两个圆的圆心都在OH上,并且两圆半径比为1:2 所以G是三角形ABC外接圆和三角形XYZ外接圆(九点圆)的反位似中心(相似点在位似中心的两边),H 是正位似中心(相似点在位似中心的同一边). 所以H到三角形ABC的外接圆上的连线中点必在三角形DEF的外接圆上. 旁心定理 三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。 证明

22、:EO=FO=DO 在ADO与AFO中: AFO=ADO DAO=FAO(角平分线) AO=AO(公共边) ADO与AFO全等 DO=FO(两个三角形全等,三边对应等) 在FCO与CEO中: CFO=ACEO ECO=FCO(角平分线) CO=CO(公共边) FCO与CEO全等 EO=FO(两个三角形全等,三边对应等) EO=FO(两个三角形全等,三边对应等) 又EO=DO(两个三角形全等,三边对应等) EO=FO=DO 费马点定义在一个三角形中,到3个顶点距离之和最小的点叫做这个三角形的费马点。 (1)若三角形ABC的3个内角均小于120,那么3条距离连线正好平分费马点所在的周角。所以三角形

23、的费马点也称为三角形的等角中心。 (2)若三角形有一内角不小于120度,则此钝角的顶点就是距离和最小的点。 费马点的判定(1)对于任意三角形ABC,若三角形内或三角形上某一点E,若EA+EB+EC有最小值,则E为费马点。 费马点的计算(2)如果三角形有一个内角大于或等于120,这个内角的顶点就是费马点;如果3个内角均小于120,则在三角形内部对3边张角均为120的点,是三角形的费马点。 证明我们要如何证明费马点呢: 费马点证明图形(1)费马点对边的张角为120度。 CC1B和AA1B中,BC=BA1,BA=BC1,CBC1=B+60度=ABA1, CC1B和AA1B是全等三角形,得到PCB=P

24、A1B 同理可得CBP=CA1P 由PA1B+CA1P=60度,得PCB+CBP=60度,所以CPB=120度 同理,APB=120度,APC=120度 (2)PA+PB+PC=AA1 将BPC以点B为旋转中心旋转60度与BDA1重合,连结PD,则PDB为等边三角形,所以BPD=60度 又BPA=120度,因此A、P、D三点在同一直线上, 又CPB=A1DB=120度,PDB=60度,PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短 在ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将BMC以点B为旋转中心旋转60度

25、与BGA1重合,连结AM、GM、A1G(同上),则AA1A1G+GM+MA=AM+BM+CM.所以费马点到三个顶点A、B、C的距离最短。 平面四边形费马点 平面四边形中费马点证明相对于三角型中较为简易,也较容易研究。 (1)在凸四边形ABCD中,费马点为两对角线AC、BD交点P。 费马点(2)在凹四边形ABCD中,费马点为凹顶点D(P)。 经过上述的推导,我们即得出了三角形中费马点的找法: 当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。 费马点性质: 费马点(1)平面内

26、一点P到ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小。 特殊三角形中: (2).三内角皆小于120的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (3).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (4)当ABC为等边三角形时,此时外心与费马点重合 欧拉线 定义 三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。 莱昂哈德欧拉于1765年在它的著作三角形的几何学中首次提出定理:三角形的重心在欧拉线

27、上,即三角形的重心、垂心和外心共线。他证明了在任意三角形中,以上四点共线。欧拉线上的四点中,九点圆圆心到垂心和外心的距离相等,而且重心到外心的距离是重心到垂心距离的一半。 欧拉线的证法1作ABC的外接圆,连结并延长BO,交外接圆于点D。连结AD、CD、AH、CH、OH。作中线AM,设AM交OH于点G BD是直径 BAD、BCD是直角 ADAB,DCBC CHAB,AHBC DACH,DCAH 四边形ADCH是平行四边形 AH=DC M是BC的中点,O是BD的中点 OM= 1/2DC OM= 1/2AH OMAH OMG HAG AG/GM=2/1 G是ABC的重心 G与G重合 O、G、H三点在

28、同一条直线上 如果使用向量,证明过程可以极大的简化,运用向量中的坐标法,分别求出O G H三点的坐标即可. 欧拉线的证法2设H,G,O,分别为ABC的垂心、重心、外心 。连接AG并延长交BC于D, 则可知D为BC中点。 连接OD ,又因为O为外心,所以ODBC。连接AH并延长交BC于E,因H为垂心,所以 AEBC。所以OD/AE,有ODA=EAD。由于G为重心,则GA:GD=2:1。 连接CG并延长交BA于F,则可知F为AB中点。同理,OF/CM.所以有OFC=MCF 连接FD,有FD平行AC,且有DF:AC=1:2。FD平行AC,所以DFC=FCA,FDA=CAD,又OFC=MCF,ODA=EAD,相减可得

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1