1、椭圆形的低通滤波器仿真计算椭圆形的低通滤波器推导一、AR7400低通滤波器原理图AR7400中 5-阶的椭圆形的低通滤波器,由元件C75,C70,L14,C79,L16,C76,C80,L17,C71,L15,和C77组成。二、单端线上的椭圆低通滤波器1. 归一化椭圆低通滤波器模型特性:通带内有起伏,阻带内也有起伏:2. 5-阶椭圆低通滤波器的归一化模型:归一化低通滤波器截止频率为(1/2)Hz,特征阻抗1;3. 利用归一化模型设计低通滤波器步骤:4. 频率和阻抗变换计算公式:5. 设计一个截止频率为68MHz,阻抗为50的低通滤波器:5阶归一化低通滤波器截止频率为(1/2)Hz,特征阻抗1;
2、6. 对归一化低通滤波器滤波器进行频率变换:5阶低通滤波器截止频率为68MHz,特征阻抗1;7. 对以上滤波器进行阻抗变换:5阶低通滤波器截止频率为68MHz,特征阻抗50;8. 对5阶低通滤波器截止频率为68MHz,特征阻抗50仿真;5阶低通滤波器截止频率为68MHz,特征阻抗50仿真图形仿真结果:通带内有两个起伏点,阻带内有两个陷波点,通带截止频率68MHz,插损小于1.2dB, 阻带内带外抑制23 dB (at87125MHz ), 60 dB(at125860MHz );9. 对AR7400单端线滤波器的仿真;当滤波器中的容值和电感值变化时,如下图,并对其进行仿真,AR7400滤波器的
3、一部分仿真结果:通带内有两个起伏点,阻带内有两个陷波点,通带截止频率80MHz,插损小于1.35dB, 阻带内带外抑制17dB (at90860MHz );说明:电容变小截止频率变大,带外抑制变小;三、差分线上的椭圆低通滤波器与单端走线的比较差分信号与传统的一根信号线一根地线(即单端信号)相比,其优点是:a、抗干扰能力强。干扰噪声一般会等值、同时的被加载到两根信号线上,而其差值为0,即,噪声对信号的逻辑意义不产生影响。 b、能有效抑制电磁干扰(EMI)。由于两根线靠得很近且信号幅值相等,这两根线与地线之间的耦合电磁场的幅值也相等,同时他们的信号极性相反,其电磁场将相互抵消。因此对外界的电磁干扰
4、也小。 1、直接对差分线上的滤波器(归一化推导)进行仿真仿真结果:从上图看出两个低通滤波器直接并连截止频率变为40MHz,插损5dB,带外抑制变为10dB左右2、直接对AR7400椭圆滤波器进行仿真: AR7400椭圆低通滤波器仿真波形图:从仿真图看AR7400滤波器截止频率50MHz,插损2.8 dB,带外抑制6.3 dB, 与归一化变换出的滤波器差距很大;3、差分信号严格大小相等且极性相反,对差分线上滤波器等效,把其中一条线进行等效为参考地,等效的结果为单端滤波器,然后对单端滤波器进行仿真;等效以后的仿真图形:截止频率为70MHz,插损1.044,带外抑制15dB;以下是经典滤波电路:585MHz滤波器:285MHz滤波器:105865MHz滤波器: