1、实验3读者写者问题与进程同步实验3-读者-写者问题与进程同步(总34页)实验3 读者/写者问题与进程同步 实验目的理解临界区和进程互斥的概念,掌握用信号量和PV操作实现进程互斥的方法。 实验要求在windows或者linux环境下编写一个控制台应用程序,该程序运行时能创建N个线程,其中既有读者线程又有写者线程,它们按照事先设计好的测试数据进行读写操作。请用信号量和PV操作实现读者/写者问题。读者/写者问题的描述如下:有一个被许多进程共享的数据区,这个数据区可以是一个文件,或者主存的一块空间,甚至可以是一组处理器寄存器。有一些只读取这个数据区的进程(reader)和一些只往数据区中写数据的进程(
2、writer)。以下假设共享数据区是文件。这些读者和写者对数据区的操作必须满足以下条件:读读允许;读写互斥;写写互斥。这些条件具体来说就是:(1)任意多的读进程可以同时读这个文件;(2)一次只允许一个写进程往文件中写;(3)如果一个写进程正在往文件中写,禁止任何读进程或写进程访问文件;(4)写进程执行写操作前,应让已有的写者或读者全部退出。这说明当有读者在读文件时不允许写者写文件。对于读者-写者问题,有三种解决方法:1、读者优先除了上述四个规则外,还增加读者优先的规定,当有读者在读文件时,对随后到达的读者和写者,要首先满足读者,阻塞写者。这说明只要有一个读者活跃,那么随后而来的读者都将被允许访
3、问文件,从而导致写者长时间等待,甚至有可能出现写者被饿死的情况。2、写者优先除了上述四个规则外,还增加写者优先的规定,即当有读者和写者同时等待时,首先满足写者。当一个写者声明想写文件时,不允许新的读者再访问文件。3、无优先除了上述四个规则外,不再规定读写的优先权,谁先等待谁就先使用文件。 实验步骤 算法分析1、错误的解法图3-1 错误的解法semaphore r_w_w=1;reader()P(r_w_w);读文件;V(r_w_w);writer()P(r_w_w);写文件;V(r_w_w);有同学认为,可以将文件视为临界资源,使用临界资源的代码就构成临界区,为了对临界区进行管理,只需设置一个
4、互斥信号量r_w_w,读或者写之前执行P(r_w_w),之后执行V(r_w_w)即可,从而得到图3-1所示的算法描述。该方法虽然能满足读写互斥和写写互斥,但是不满足读读允许,只要有一个读者在读文件,其他的读者都被阻塞了。可见,单纯使用互斥信号量不能解决读者/写者问题,还需要引入计数器对读者进行记数。2、读者优先如何纠正上述解法中存在的错误呢其实,对于相继到达的一批读者,并不是每个读者都需要执行P(r_w_w)和V(r_w_w)。在这批读者中,只有最先到达的读者才需要执行P(r_w_w),与写者竞争对文件的访问权,若执行P(r_w_w)成功则获得了文件的访问权,其他的读者可直接访问文件;同理,只
5、有最后退出临界区的读者需要执行V(r_w_w)来归还文件访问权。为了记录正在读文件的一批读者的数量,需要设置一个整型变量readercount,每一个读者到达时都要将readercount加1,退出时都要将readercount减1。由于只要有一个读者在读文件,便不允许写者写文件,所以,仅当readercount=0时,即尚无读者在读文件时,读者才需要执行P(r_w_w)操作。若P(r_w_w)操作成功,读者便可去读文件,相应地,readercount+1。同理,仅当在执行了readercount减1操作后其值为0时,才需要执行V(r_w_w)操作,以便让写者写文件。又因为readercoun
6、t是一个可被多个读者访问的临界资源,所以应该为它设置一个互斥信号量readercount_mutex.。每个读者在访问readercount之前执行P(readercount_mutex),之后执行V(readercount_mutex)。通过上述分析得到图3-2所示的算法描述,其中的数字表示语句对应的行号。图3-2 读者优先算法01 semaphore r_w_w=1;02 semaphore readercount_mutex=1;03 int readercount=0; 04 reader()05 P(readercount_mutex);06 if(readercount=0) P(
7、r_w_w);07 readercount+;08 V(readercount_mutex);09 读文件;10 P(readercount_mutex);11 readercount-;12 if(readercount=0) V(r_w_w);13 V(readercount_mutex);14 1516 writer()17 P(r_w_w);18 写文件;19 V(r_w_w);20 下面对该算法的调度效果进行分析。假设最初没有进程在访问文件。过了一会,就会有很多读者和写者到达。对它们可能有两种调度情形。情形1 最先调度写者写者执行P(r_w_w)操作成功,将r_w_w的值变为0,获得
8、文件的访问权;其它的写者执行P(r_w_w)将r_w_w的值变为负数,从而阻塞在信号量r_w_w上;第一个读者执行P(readercount_mutex)成功,将信号量readercount_mutex的值变为0,然后判断readercount是0,所以执行P(r_w_w),将r_w_w的值减1后仍然为负数从而阻塞在信号量r_w_w上,其它的读者执行P(readercount_mutex)将信号量readercount_mutex的值变为负数,从而阻塞在信号量readercount_mutex上。例如,对于请求序列w1,w2,r1,w3,r2,r3,我们用图表形象地刻画进程的活动,图表中包括读
9、者计数器的值、信号量readercount_mutex和r_w_w的值和队列以及访问文件的进程。初始状态。没有进程使用文件,计数器readercount的值是0,信号量readercount_mutex和r_w_w的值都是1,队列都是空,参见图3-3;w1请求写文件,所以执行语句17,将信号量r_w_w的值减1后变成0,w1获得文件使用权,执行语句18,开始写文件,参见图3-4;在w1尚未写完时,w2提出写请求,所以执行语句17,将信号量r_w_w的值减1后变成负1,w2被阻塞在信号量r_w_w上,参见图3-5;同时r1提出读请求,所以执行语句5,将信号量readercount_mutex的值
10、减1后变成0,接着执行语句6,判断readercount的值是0,所以执行P(r_w_w),将信号量r_w_w的值减1后变成-2,r1被阻塞在信号量r_w_w上,参见图3-6;同时w3提出写请求,所以执行语句17,将信号量r_w_w的值减1后变成-3,w3被阻塞在信号量r_w_w上,参见图3-7;同时r2提出读请求,所以执行语句5,将信号量readercount_mutex的值减1后变成-1,r2被阻塞在信号量readercount_mutex上,参见图3-8;同时r3提出读请求,所以执行语句5,将信号量readercount_mutex的值减1后变成-2,r3被阻塞在信号量readercou
11、nt_mutex上,参见图3-9;w1写完文件,执行语句19,将信号量r_w_w的值加1后变成-2,并唤醒w2,w2接着执行语句18,开始写文件,参见图3-10;w2写完文件,执行语句19,将信号量r_w_w的值加1后变成-1,并唤醒r1,r1接着执行语句7,将readercount的值加1后变成1,执行语句8,将信号量readercount_mutex的值加1后变成-1,并唤醒r2,r1执行语句9,开始读文件;被唤醒的r2执行语句6,判断readercount的值不是0,所以执行语句7,将readercount的值加1后变成2,执行语句8,将信号量readercount_mutex的值加1后
12、变成0,并唤醒r3,r2执行语句9,开始读文件;被唤醒的r3执行语句6,判断readercount的值不是0,所以执行语句7,将readercount的值加1后变成3,执行语句8,将信号量readercount_mutex的值加1后变成1,r3执行语句9,开始读文件。这样三个读者同时读文件,参见图3-11;当r1、r2和r3读完文件时,都执行语句1014,并由最后一个执行语句1014的读者执行V(r_w_w),将信号量r_w_w的值加1后变成0,并唤醒w3,w3接着执行语句18,开始写文件,参见图3-12;当w3写完文件时,执行语句19,将信号量r_w_w的值加1后变成1,回到初始状态。可见,
13、对于请求序列w1,w2,r1,w3,r2,r3,实际访问文件的顺序是w1,w2,r1,r2,r3,w3。虽然w3比r2、r3先提出请求,但是由于在此之前已经有r1在读文件,所以优先响应读者r2、r3,阻塞写者w3。如果在w3之后不断有新的读者到达,则w3将一直被阻塞,直至被饿死。情形2 最先调度读者第一个读者执行P(readercount_mutex)成功,将信号量readercount_mutex的值变为0,接着该读者判断readercount是0,所以执行P(r_w_w)操作成功,获得文件的访问权,将r_w_w的值变为0,然后将readercount变成1,执行V(readercount_
14、mutex),之后开始读文件;随后的写者执行P(r_w_w)将r_w_w的值变为负数,从而阻塞在信号量r_w_w上;其它的读者执行P(readercount_mutex)成功,判断readercount不是0,所以直接将readercount的值再加1,执行V(readercount_mutex),之后开始读文件。可见多个读者可以同时读文件,并在读文件时阻塞写者。3、写者优先通过增加信号量并修改上述程序可以得到写者优先算法。为了实现写者优先算法,需要将写者和读者分开排队,并且第一个读者和其它读者也要分开排队。这样就需要三个队列,一个是写者排队的地方,另一个是第一个读者排队的地方,第三个是其它读
15、者排队的地方。相应地需要设置三个信号量,r_w_w、first_reader_wait和reader_wait。当一个写者声明想写文件时,可以让新的读者中的第一个到first_reader_wait上排队等待;当有读者阻塞在first_reader_wait上时,让其它读者阻塞在reader_wait上;当有一个写者在写文件时,其它写者到r_w_w上排队。只要有活跃的写者或者写者队列不为空,则阻塞新到达的读者。为了记录已经发出声明的写者数量,需要设置一个整数writercount,以表示声明要写文件的写者数目。由于只要有一个写者到达,就不允许读者去读,因此仅当writercount=0,表示无
16、写者声明写时,写者才需要执行P(first_reader_wait)操作,若操作成功,写者便可以执行P(r_w_w)去竞争写文件权利。其它写者不需要再向读者声明,可以直接执行P(r_w_w)去竞争写文件权利。同理仅当写者在执行writercount减1操作后其值为0时,才需要执行V(first_reader_wait)操作,以便唤醒第一个被阻塞的读者去读文件。又因为writercount是一个可被多个写者访问的临界资源,所以,应该为它设置一个互斥信号量writer_mutex。通过上述分析得到图3-13的算法描述。下面对该算法的调度效果进行分析。假设最初没有进程在访问文件。过了一会,就会有很多
17、读者和写者到达。对它们可能有两种调度情形。情形1 最先调度写者写者执行P(writercount_mutex),将writercount_mutex的值变为0,并判断writercount是0,从而执行P(first_reader_wait),将first_reader_wait的值变为0,成功地向读者声明了写访问意图,接着将writercount变为1,执行V(writercount_mutex),将writercount_mutex的值变为1。然后写者执行P(r_w_w)操作,将r_w_w的值变为0,成功地获得了文件的写访问权利。第一个写者开始写文件;其它的写者执行P(writercoun
18、t_mutex),判断writercount不是0,所以直接将writercount加1,执行V(writercount_mutex),然后执行P(r_w_w)操作,将r_w_w的值变为负数,写者依次被阻塞在信号量r_w_w上;第一个读者执行P(reader_wait),将reader_wait的值变为0,接着执行P(first_reader_wait),将first_reader_wait的值变为负1,阻塞在信号量first_reader_wait上;其它读者执行P(reader_wait),将reader_wait的值变为负数,依次阻塞在reader_wait上。当第一个写者写完文件后,执
19、行V(r_w_w),唤醒一个写者并将写者计数器writercount减1,被唤醒的写者可以写文件,写完后执行V(r_w_w),唤醒下一个写者并将写者计数器writercount减1,直到最后一个写者将writercount减为0,才执行V(first_reader_wait)唤醒第一个阻塞的读者。被唤醒的读者执行P(readercount_mutex),然后判断readercount是0,从而执行 P(r_w_w),由于最后一个写者写完文件后,r_w_w的值已经还原为1,所以被唤醒的读者执行P(r_w_w)成功,将r_w_w的值变为0,获得文件的读访问权。接着将readercount的值加到1
20、,执行V(readercount_mutex),再执行V(reader_wait),唤醒第二个等待的读者,第一个读者执行V(first_reader_wait),将first_reader_wait的值还原到1。第一个读者可以读文件了。若没有新的写者到达,则第二个读者执行P(first_reader_wait)成功,执行P(readercount_mutex)并判断readercount不是0,将readercount加到2,执行V(readercount_mutex),再执行V(reader_wait)唤醒第三个读者,再执行V(first_reader_wait),第二个读者也可以读文件了。
21、图3-13 写者优先算法01 semaphore r_w_w=1;02 semaphore reader_wait=1;03 semaphore first_reader_wait=1;04 semaphore readercount_mutex=1;05 semaphore writercount_mutex=1;06 int writercount=0;07 int readercount=0; 08 reader()09 P(reader_wait);10 P(first_reader_wait);11 P(readercount_mutex);12 if(readercount=0)
22、P(r_w_w);13 readercount+;14 V(readercount_mutex);15 V(reader_wait);16 V(first_reader_wait);17 读文件;18 P(readercount_mutex);19 readercount-;20 if(readercount=0) V(r_w_w);21 V(readercount_mutex);22 23 writer()24 P(writercount_mutex);25 if(writercount=0) P(first_reader_wait);26 writercount+;27 V(writerc
23、ount_mutex);28 P(r_w_w);29 写文件;30 V(r_w_w);31 P(writercount_mutex);32 writercount-;33 if(writercount=0) V(first_reader_wait);34 V(writercount_mutex);35 情形2 最先调度读者第一个读者执行P(reader_wait),将reader_wait的值变为0,执行P(first_reader_wait),将first_reader_wait的值变为0,向写者声明有读者要读文件,接着执行P(readercount_mutex),并判断readercoun
24、t是0所以执行P(r_w_w),将r_w_w的值变为0,成功地获得了文件的读访问权,将读者计数器readercount加到1,执行V(readercount_mutex),V(reader_wait),V(first_reader_wait),将reader_wait和first_reader_wait的值依次还原为1。之后,第一个读者开始读文件。若在第一个读者读文件的过程中没有写者到达,则其它读者可以同时读文件;若在读者读文件时,有写者到达,则第一个到达的写者执行P(writercount_mutex),将writercount_mutex的值变为0,并判断writercount是0,从而执
25、行P(first_reader_wait),将first_reader_wait的值变为0,成功地向读者声明了写访问意图,接着将writercount变为1,执行V(writercount_mutex),将writercount_mutex的值变为1。然后写者执行P(r_w_w)操作,(由于有读者在读文件,所以)将r_w_w的值变为负1,写者被阻塞在信号量r_w_w上;当在读文件的所有读者都读完文件后,由最后一个退出的读者执行V(r_w_w)唤醒写者。第一个写者开始写文件。4、无优先除了在读者优先时需要的信号量r_w_w和readercount_mutex之外,还需要设置一个信号量wait供读
26、者和写者排队。读者和写者都排在wait队列上。若有读者在读文件,则第一个写者阻塞在r_w_w上,其它的写者和读者阻塞在wait上;若有一个写者在写文件,则其它写者和读者都阻塞在wait上。无优先的算法描述如图3-14所示。图3-14 无优先算法01 semaphore r_w_w=1;02 semaphore wait=1;03 semaphore readercount_mutex=1;04 int readercount=0; 05 reader()06 P(wait);07 P(readercount_mutex);08 if(readercount=0) P(r_w_w);09 rea
27、dercount+;10 V(readercount_mutex);11 V(wait);12 读文件;13 P(readercount_mutex);14 readercount-;15 if(readercount=0) V(r_w_w);16 V(readercount_mutex);17 18 writer()19 P(wait);20 P(r_w_w);21 写文件;22 V(r_w_w);23 V(wait);24 下面对该算法的调度效果进行分析。最初没有进程在访问文件。过了一会,就会有很多读者和写者到达。对它们可能有两种调度情形。情形1 最先调度写者写者执行P(wait)操作成功
28、,将wait的值变为0,再执行P(r_w_w)操作成功,将r_w_w的值变为0,获得文件的访问权,写者可以写文件了。其它的写者或者读者执行P(wait)操作,将wait的值变为负数,从而依次阻塞在信号量wait上;第一个写者写完文件后,执行V(r_w_w),将r_w_w的值还原为1,再执行V(wait)唤醒排在wait队列最前面的一个进程,可能是读者,也可能是写者。情形2 最先调度读者第一个读者执行P(wait)操作成功,将wait的值变为0,再执行P(readercount_mutex)成功,将信号量readercount_mutex的值变为0,接着该读者判断readercount是0,所以
29、执行P(r_w_w)操作成功,获得文件的访问权,将r_w_w的值变为0,然后将readercount变成1,执行V(readercount_mutex),V(wait),将信号量readercount_mutex和wait的值还原为1,之后开始读文件;若随后到达的仍然是读者,则这些读者将readercount各加1之后也开始读文件;若随后到达的是写者,则写者执行P(wait)操作成功,将wait的值变为0,再执行P(r_w_w)操作将r_w_w的值变为负数,从而阻塞在r_w_w上。这使得在它之后到达的读者和写者相继阻塞在wait上。当第一批读者读完文件后,由最后一个退出的读者执行执行V(r_w
30、_w),从而唤醒第一个被阻塞的写者。 设计并分析测试数据图3-15 测试数据线程名称申请时刻持续使用时间r1015r2115w133r342w256w3610r478r592w41018w5122为了验证算法的正确性,需要设计测试数据,并对测试数据进行分析,总结出在该组测试数据下,程序应该得到什么结果,然后运行程序,将程序运行结果与分析结果相比较,如果二者一致,则可认为程序是正确的。作者设计的测试数据如图3-15所示,包括10个线程,其中有5个读者线程r1r5,另外5个是写者线程w1w5。读者线程r1在时刻0提出读请求,如果请求得到允许,r1将用15秒的时间读文件;写者线程w3在时刻6提出写请
31、求,如果请求得到允许,w3将用10秒的时间写文件。从表中可以看出,10个线程提出请求的次序是:r1,r2,w1,r3,w2,w3,r4,r5,w4,w5。下面分析一下测试数据在不同调度算法下的调度次序。1、读者优先算法请对照图3-2的读者优先算法和图3-15的测试数据来理解下面的分析。作者将使用图形来帮助理解,图形中包括所分析的时刻,读者计数器变量readercount的值,信号量r_w_w的值和队列。为了简化分析,不考虑读者在语句6、7之间和语句11、12之间被中断的情况,所以图形中省略了信号量readercount_mutex。初始状态没有线程使用文件,读者计数器的值为0,信号量r_w_w的值为1,没有线程阻塞在r_w_w上。如图3-16所示。时刻0线程r1在0时刻执行语句5,将readercount_mutex的值减1后变成0,执行语句6,判断readercount的值是0,从而执行P(r_w_w)申请使用文件,将r_w_w的值减1后变成0,说
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1