1、平面直角坐标系教案全第七章 平面直角坐标系教材内容本章内容包括平面直角坐标系及有关概念, 点的坐标, 用坐标表示地理位置 和平移等。实际生活中常用有序实数对表示位置, 由此引出平面直角坐标系, 建立点与 有序实数对的对应关系,从而把数和形结合起来。用坐标法表示地理位置体现 了直角坐标系在实际生活中的应用。用坐标表示地理位置,可以通过建立直角 坐标系,绘制出一个区域内地点分布的平面示意图来完成。用坐标表示平移, 从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面 探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或 图形顶点坐标的有规律变化引起的点或图形的平移。
2、此外,用极坐标表示一个地点的地理位置,在本章最后的“数学活动”中有 所渗透。教学目标知识与技能1、能利用有序数对来表示点的位置;2会画出平面直角坐标系,能建立适 当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描 出点的位置,由点的位置写出它的坐标。过程与方法1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移 之间关系的探索过程,发展学生的形象思维能力与数形结合意识; 2、通过平面 直角坐标确定地理位置,提高学生解决问题的能力。情感、态度与价值观 明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化 的,进一步发展学生的辩证唯物主义思想。重点难点在
3、平面直角坐标糸中, 由已知点的坐标确定这一点的位置, 由已知点的位置 确定这一点的坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序 实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点。课时分配7.1平面直角坐标系 3课时7.2坐标方法的简单应用 2课时本章小结 2课时7.1.1 有序实数对教学目标理解有序数对的意义,能利用有序数对表示物体的位置。重点难点 有序数对的概念, 用有序数对来表示物体的位置是重点; 用有 序数对表示平面内的点是难点。教学过程一、问题导入 在日常生活中,我们常常会碰到这样的问题:到电影院看电影你怎样找到自己的位置?在地图上你怎样确定一个地点的 位置?下
4、象棋时,有人说“炮二平八”,你怎么走棋子?这些都说的是用两个数 确定一个物体的位置,那么怎样确定一个物体的位置呢?二、有序数对投影1下面是根据教室平面图写的通知:请以下座位的同学:(1, 5)、(2, 4)、(4, 2)、(3, 3)、(5, 6),今天放学 后参加数学问题讨论.7LJ11 161 111 I15二111 14111 |二横31 11|-|排2厂丨1I |111 I123456纵排怎样确定教室里座位的位置?可用排数和列数两个不同的数来确定位置。排数和列数的先后顺序对位置有影响吗?举例说明。排数和列数的先后顺序对位置有影响,如(2, 4)和(4, 2)表示不同的 位置,若约定“列
5、数在前排数在后”,则(2, 4)表示第2列第4排,而(4, 2) 则表示第4列第2排。这就是说用两个数表示物体的位置是有顺序的。假设我们约定“列数在前,排数在后”,请你在课本图6.1-1上标出被邀请 参加讨论的同学的座位。上面提到的问题都是通过像“几排几号”这样含有两个数的词来表示一个 确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数” ,后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a, b)。利用有序数对,可以很准确地表示出一个位置。生活中利用有序数对表示 位置的情况是很常见的。你能再举出一些例子吗?三、例题投影2写出表示学校里各个地点的有
6、序数对.实验楼运动场食堂 宿舍楼教4学楼19办公楼1W宣传 橱窗大门1(5,2)76532127510分析:从表示大门的有序数对你能知道前一个数的意义是什么?后一个数的 意义是什么吗?答:宣传橱窗(2, 2),办公楼(3,3),实验楼(3,7),运动场(6, 8), 教学楼(7,4),宿舍楼(8,5),食堂(9, 6)。四、 课堂练习课本40面练习。五、 课堂小结1、 在生活中的许多情况下,我们可以用一对有序数对表示位置,当然表示 位置的方法不止这一种,以后我们会知道还有其它的表示位置的方法。2、 用有序数对表示位置时,要注意数对的顺序,明确前一个数的意义和后 一个数的意义,这样我们才不会搞错
7、。作业:7.1 . 2平面直角坐标系 (一)教学目标1、认识平面直角坐标系的意义;2、理解点的坐标的意义;3、 会用坐标表示点。重点难点平面直角坐标系和点的坐标是重点;根据点的位置写出点的坐标 是难点。教学过程一、复习导入数轴上的点可以用什么来表示?可以用一个数来表示,我们把这个数叫做这个点的坐标。 投影1如图,点A的坐标是2,点B的坐标是一3。C 3 B 斗-4 -3 -2 -1 0 12 3 4坐标为一4的点在数轴上的什么位置?在点C处。这就是说,知道了数轴上一个点的坐标,这个点的位置就确定类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内 的点的位置呢?二、平面直角坐标系我
8、们知道,平面内的点的位置可以用有序数对来表示,为此,我们可以在 平面内画出两条互相垂直、原点重合的数轴组成直角坐标系来表示。5432-5 -4 -3-2 -1 0 * 56-1 11-2 11 -3 -4 ,-5 .如图,水平的数轴称为 x轴或横轴,习惯上取向右为正方向;竖直的数轴称 为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点。有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。二、点的坐标如图,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N 在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫 做点A的坐标,记作A
9、(3,4)。NA 一 .4 (3,4)1C11i M-L |;3 01-3B L.r类似地,请你根据课本41面图6.1-4,写出点B、C D的坐标.B(-3,4)、C(0,2)、D(-3,0).注意:写点的坐标时,横坐标在前,纵坐标在后。三、四个象限建立了平面直角坐系以后,坐标平面就被两条坐标轴分成I、U、M、 IV四个部分,分别叫第一象限、第二象限、第三象限、第四象限 坐标轴上的点不 属于任何象限。投影2L第二象限. 第一象限(,+)-(+,+)LO1第二象限;第二象限(,)( +,)做一做:练习1题。思考:1、原点0的坐标是什么?x轴和y轴上的点的坐标有什么特点? 原点0的坐标是(0,0)
10、,x 轴上的点的纵坐标为0,y轴上的点的横坐标为0。2、各象限内的点的坐标有什么特点?第一象限上的点,横坐标为正数,纵坐标为正数;第二象限上的点,横坐标为负数,纵坐标为正数;第三象限上的点,横坐标为负数,纵坐标为负数;第四象限上的点,横坐标为正数,纵坐标为负数.四、 课堂练习投影31、 点A(-2,-1)与x轴的距离是 与y轴的距离是 .注意:纵坐标的绝对值是该点到x轴的距离,横坐标的绝对值是该点到y轴 的距离。2、 点A(3,a)在x轴上,点B(b,4)在y轴上,则a= ,b= .3、 点M(-2,3)在第 象限,则点N(-2,-3)在 象限.,点P(2, -3) 在象限,点Q(2, 3)
11、在 象限.五、 课堂小结1、 平面直角坐标糸及有关概念;2、 、已知一个点,如何确定这个点的坐标.3、 坐标轴上的点和象限点的特点。作业:7.1 . 2平面直角坐标系(二)教学目标1、在给定的直角坐标系中,会根据坐标描出点的位置;2、能建 立适当的直角坐标系,描述物体的位置。重点难点描出点的位置和建立坐标系是重点;适当地建立坐标系是难点。教学过程一、复习导入投影1写出图中点A B CD E的坐标。.-421,-4 * | * +-5 -4 -3 -2 -1 0 12 3 4-1 * IA-3D -4由点的位置可以写出它的坐标, 反之,已知点的坐标怎样确定点的位置呢?二、例题投影2例 在平面直角
12、坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4).分析:根据点的坐标的意义,经过 A点作x轴的垂线,垂足的坐标是 A点 横坐标,作y轴的垂线,垂足的坐标是 A点的纵坐标。你认为应该怎样描出点 A 的坐标?先在x轴上找出表示4的点,再在y轴上找出表示5的点,过这两个点分别 作x轴和y轴的垂线,垂线的交点就是A.类似地,我们可以描出点 B C、D E.三、建立直角坐标糸投影3探究:如图,正方形ABCD勺边长为6.D CA(0) B x(1) 如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y轴是 哪条线?y 轴是AD所在直线.(2)
13、 写出正方形的顶点 A B C D的坐标.A(0,0),B(0,6),C(6,6),D(6,0).(3) 请你另建立一个平面直角坐标系,此时正方形的顶点 A B C D的坐标 又分别是多少?与同学交流一下.可以看到建立的直角坐标系不同,则各点的坐标也不同.你认为怎样建立直 角坐标系才比较适当?要尽量使更多的点落在坐标轴上。四、 课堂练习投影41、课本43面练习2题.2、在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4) 四点,所组成的图形是 .五、 课堂小结1、 已知点的位置可以写出它的坐标,已知点的坐标可以描出点的位置。点与有序数对(坐标)是 对应的关
14、系。2、 为了方便地描述物体的位置,需要建立适当的直角坐标糸。 作业:第七章复习一(7.1 )一、双基回顾1、点的坐标:过平面内任意一点 P分别向x轴、y轴作垂线,垂足在x轴、 y轴上对应的坐标a、b分别叫做点P的 ,有序数对(a,b)叫做P点的 。注意:平面上的点与有序实数对(坐标)一一对应。1已知点P的坐标是(一2,3),则点P到x轴的距离是 ,到y轴的距离是_.2、象限第二象限第一象限(,+ ):(+ , +)O第二象限-第二象限(-,-)(+ ,)2如果点 M到y轴的距离是 4,至U x轴的距离是 3,贝U M的坐标 为 . 3、 坐标轴上点的特征:x轴上点的坐标的特点是 , y轴上点
15、的坐标的特点是 ,原点的坐标是 .3如果点A( m n)的坐标满足 mn=Q则点A在( )A. 原点上 B. x 轴上 C. y 轴上 D. 坐标轴上4、 建立直角坐标糸4如图所示,若在象棋盘上建立直角坐标系,使“将”位于点( 1,-2),“象”位于点(3,-2),则“炮”位于点 .二、例题导引例1如果点M(a+b,ab)在第二象限,那么点 N(a,b)在第 象限;若a= 0,则M点在 例2已知长方形ABCD中, AB=5 BC=3并且AB/ x轴,若点A的坐标为( 2, 4),求点C的坐标.A (0, 0), B( 3, 6), C( 14,例3已知四边形ABCD各顶点的坐标分别是8), D
16、 (16, 0),求四边形ABCD勺面积。三、练习升华 夯实基础1、在电影票上,如果将“ 8排4号”记作(8, 4),那么(10, 15)表示2、课间操时,小华、小军、小刚的位置如图,小华对小刚说: “如果我的位置用(0, 0)表示,小军的位置用(2, 1)表示,那么你的位置可以表示成( )A 、( 5 , 4 ) B、( 4 , 5) C、( 3 , 4) D、( 4 , 3 )TI- + 41-丄I-4-+ 十 #+亠-r十+丄十+丄3、 点A (3, 5)在第 象限,到x轴的距离为 ,到y轴的距离为 。4、 在平面直角坐标系中,点(-1,m 2 +1) 一定在()A、第一象限 B、第二象
17、限 C、第三象限 D第四象限5、点P( m 3, m + 1)在坐标系的x轴上,则点P的坐标为( )A. (0, 2) B . ( 2,0) C . ( 4,0) D . (0, 4)6已知点A (-1,b+2)在坐标轴上,则b = .7、如图,写出八边形各顶点的坐标。(图见课本59面第2题)8、在同一平面坐标系中描出下列各组点, 并将各组内的点有线段连接起来:(1) (2, 0)、(4, 0)、(2, 2); (2) (0,2)、(0,4)、(一 2, 2); (3)( 4, 0)、(一 2, 2)、(一 2, 0); (4) (0, 2)、(2, 2)、(0, 4).观察所得的图形,你觉得
18、像什么?(课本 59面3题)9、图中标明了李明同学家附近的一些地方;(1)根据图中所建立的平面直 角坐标系,写出学校,邮局的坐标;(2)某星期日早晨,李明同学从家里出发, 沿着(一 2, )、( 1, 2)、(1, 2)、(2, )、( 1,)、(1,3 )、(一 1,0 )、(3)连接他在(2)中经能力提高(0, 1)的路线转了一下,写出他路上经过的地方; 过的地点,你能得到什么图形?y3学校2-2-1Oi11 2J 4游乐场-11 彳李1明家邮旳局水2.果店 :气车站商店公园图510、 坐标平面内的点 M(a,b)在第三象限,那么点N(b, a)在()A.第一象限 B 第二象限 C 第三象
19、限 D 第四象限11、 点K在第三象限,且横坐标与纵坐标的积为 8,写出两个符合条件的点 。12、 已知线段 MN=4, MN/ y轴,若点 M坐标为(-1,2),贝U N点坐标13、 一个长方形在平面直角坐标系中三个顶点的坐标为(- 1,- 1)、(-1, 2)、(3,-1),则第四个顶点的坐标为( )A. (2, 2) B . (3, 2) C . (3, 3) D . (2, 3)14、 已知 A (2, 0), B (-3 , -4), C (0, 0),则厶 ABC 的面积为( )A. 4 B . 6 C . 8 D . 315、 画图回答:(1)坐标(x,3 )中的x取一3,- 2
20、, 1, 0, 1, 2, 3所 表示的点是否在一条直线上?这条直线与轴有什么关系?(2)坐标(3,y )中的y取一3, 2, 1, 0, 1, 2, 3所表示的点是否在 一条直线上?这条直线与轴有什么关系?(课本 60面6题)16、图中显示了 10名同学平均每周用于阅读课外书的时间和用于看电视的 时间(单位:小时)。(1)用有序实数对表示图中各点(2)图中有一个点位于 方格的对角线上,这表示什么意思? ( 3)图中方格纸的对角线的左上方的点有什么共同的特点?它右下方的点呢? ( 4)估计一下你每周用于阅读课外书的时间和用于看电视的时间,在图上描出来,这个点位于什么位置?(课本 60面7 题)
21、L-/1175/1L/7/5 |用异;看电.视的勺时1可117、某村过去是一个缺水的村庄,由于兴修水利,现在家家户户都用上了 自来水。据村委会主任徐伯伯廛,以前全村 400多户人家只有五口水井:第一中井在村委会的院子里,第二口井在村委会北偏东 300的方向2000米处,第三口井在村委会正西方向1500米处,第四口井在村委会东南方向 1000米处,第五口井在村委会正南方向 900米处。请你根据徐伯伯的话,和同学一起讨论, 画图表示这个村庄五口井的位置。(课本60面8题)探索创新18、建立平面直角坐标系,并描出下列各点: A(1,1)、B(5,1)、C (3, 3)、D ( 3, 3)、E (1,
22、 2)、F (1, 4)、G(3, 2)、H (3, 2)、I ( 1, 1)、 J ( 1, 1).连接AB,CD,EF,GH,IJ,找出它们中点的坐标。将上述中点的横坐标 和纵坐标分别与对应线段的两个端点的横坐标和纵坐标进行比较,你发现它们之间有什么关系?写出你的发现。(课本61面9题)7.2 .1用坐标表示地理位置教学目标会根据实际情况建立适当的直角坐标系, 并能用坐标表示地理位 置。重点难点建立直角坐标系和用坐标表示地理位置是重点; 建立适当的直角 坐标系是难点。教学过程一、情景导入投影1不彗北出差办車*空昭Hi去 jfc沸.人们那探蕙带王一轎地 用+它绪人门出廿带現了 fH大方 便.
23、irr 19 Ik 2】咚兄丸柬韦抱 刃的一部窃“卞丸道茸申坐抹 蛊也理G迎欲二、用坐标表示地理位置探究:投影2根据以下条件画一幅示意图,标出学校和小刚家、小强家、 小敏家的位置.小刚家:出校门向东走150米,再向北走200米.我们知道,在平面内建立直角坐标系后,平面内的点都可以用坐标来表示, 为此,要确定区域内一些地点的位置,就要建立直角坐标系。思考:以什么位置为原点?如何确定 x轴、y轴?选取怎样的比例尺?小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校 位置为原点.以正东方向为 x轴,以正北方向为y轴建立直角坐标系。取比例 尺1: 10000 (即图中1格相当于实际的10
24、0米).点(150, 200)就是小刚家的位置。请你在课本50面图6.2 2上画出小强家、小敏家的位置,并标明它们的坐 标。归纳一下,投影3利用平面直角坐标系确定区域内一些地点的位置的步 骤是什么?(1) 建立直角坐标系,选择一个适当的参照点为原点,确定 x轴、y轴的 正方向;(2) 根据具体问题确定适当的比例尺,定出坐标系中的单位长度;3)在坐标平面内画出表示地点的点,写出各点的坐标和各个地点的名称.注意:(1)通常选择比较有名的地点,或者较居中的位置为坐标原点; (2)坐标轴的方向通常以正北为纵轴的正方向,正东为横轴的正方向; (3)要标明比例尺或坐标轴上的单位长度.三、课堂练习下图是小红
25、所在学校的平面示意图,请你指出学校各地点的位置。宿舍实验楼操场教学:楼食;厂办学校门四、课堂小结怎样利用坐标表示地理位置? 作业:7.2 . 1用坐标表示平移教学目标1、掌握坐标变化与图形平移的关系; 2、能利用点的平移规律将平面图形进行平移,会根据图形上点的坐标的变化,来判定图形的移动过程。重点难点坐标变化与图形平移的关系是重点;坐标变化与图形平移的关系 运用是难点。教学过程一、 导入新课上节课我们学习了用坐标表示地理位置,体现了直角坐标系在实际中的应 用,本节课我们研究直角坐标系的另一个应用一一用坐标表示平移。二、 图形的平移与图形上点的变化规律首先我们研究点的平移规律。如图,投影1(1)
26、将点A ( 2, 3)向右平移5个单位长度,得到点 A1,在图上标出它的坐标,点A的坐标发生了什么变化?把点 A向上平移4个单位长度呢?将点A向右平移5个单位长度,横坐标增加了 5个单位长度,纵坐标不变; 将点A向上平移4个单位长度,纵坐标增加了 4个单位长度,横坐标不变.(2)把点A向左或向下平移4个单位长度,点A的坐标发生了什么变化? 将点A向左平移4个单位长度,横坐标减少了 4个单位长度,纵坐标不变; 将点A向下平移4个单位长度,纵坐标减少了 4个单位长度,横坐标不变.从点A的平移变化中,你知道在什么情况下,坐标不变吗?在什么情况下, 坐标增加或减少吗?将点向左右平移纵坐标不变,向上下平
27、移横坐标不变;将点向右或向上平 移几个单位长度,横坐标或纵坐标就增加几个单位长度;向左或向下平移几个 单位长度,横坐标或纵坐标就减少几个单位长度。简单地表示为投影2点(x,y )向右平移a个单位长度.点(x+a,y)点(x,y)向左平移a个单位长度 点(x - a,y) 点(x,y )向上平移a个单位长度 点(x,y + b) 点(x,y )向下平移a个单位长度 点(x,y b )再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?三、图形上点的变化与图形平移的规律对一个图形进行平移,就是对这个图形上所有点的平移,因而这个图形上 所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化, 我们也可以看出对这个图形进行了怎样的平移.投影3例 如图(1),三角形ABC三个顶点坐标分别是 A(4, 3),B(3, 1), C (1, 2).(1) 将三角形ABC三个顶点的横坐标都减去 6,纵坐标不变,分别得到点 A、B、G,依次连接A、B、G各点,所得三角形 ABG与三角形ABC的大小、 形状和位置上有什么关系?(2) 将三角形ABC三个
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1