ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:197.64KB ,
资源ID:6629362      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6629362.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Report forexp2.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Report forexp2.docx

1、Report forexp2扩频通信流程matlab仿真 Background knowledgeSpread Spectrum:Form the formular, we can see that to obtain a same capacity, we can increase to decrease the required bandwidth and therefore improve the spectral efficiency. Bandwidth B to decrease the required. Moreover, we may decrease the to such

2、 a low level that the signal power is under the noise power level, this is called Spread Spectrum Modulation. The principle of spread spectrum: In the sender side, the information is modulated into digital signal, then the PN code is used to modulate the digital signal so that the spectrum of the si

3、gnal is spreaded, finally the spreaded signal is sent out. In the receiver side, we use the same PN code to de-spread the signal, and recover the original information. Above all, we can find out for a general Spread Spectrum Communication System, there needs three times of modulation and correspondi

4、ng demodulation. They are information modulation. Spread spectrum modulation and Radio Frequency modulation.DSSS (Direct Sequence Spread Spectrum):There are different kinds of techniques about Spread Spectrum, here we mainly look at the Direct Sequence Spread Spectrum (DSSS): For DSSS, we usually us

5、e periodical pseudo sequence (PN sequence) to modulate the baseband signals, and exploit the modulated signal to control the phase of carrier wave. The following is the DSSS system, and the pseudorandom sequence generator generates the spreading sequence: The following is the spectra of desired rece

6、ived signal with interference: (a) wideband filter output and (b)correlate output after de-spreadingThe correlation of the spread spectrum code sequence: The PN code can be approximately regarded as random signal, so it shares some prosperities of noise. We choose PN code, that is because in the pro

7、cess of information transformation the larger the difference between different signals the better transformation quality. This quality can be represented in the form of autocorrelation. The quality for spreading spectrum of DSSS: Anti-interference Multiple addressCDMA (Code Division Multiple Address

8、): Because of the advantages of DSSS, such as the anti-jamming capability, low probability of interception, multiple access capability and so on, it has been widely applied for secure communications and mobile communications known as Code Division Multiple Access System. Code Division Multiple Addre

9、ss System can be realized by taking advantage of the orthognality of the PN sequence. Basic Requirement In this experiment, the following items need to be done: Write a program to generate the m sequence with 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 Draw the autocorrelation of the generated m-sequence Build up

10、 a simulation system of the given figure with the data rate 1bit/s, spreading gain 64 and the carrier frequency 128Hz. Experiment Procedure Write a program to generate the m sequence with The code for generating the m-sequence is as following: function mseq = mseries (coefficients); len = length (co

11、efficients) ; L = 2len - 1 ; %the length of the shift register registers =zeros(1,len-1),1 ; %the initial content of the shift register mseq (1)= registers (len) ; for i = 2 :L newregisters(1)= mod(sum(coefficients.*registers),2); for j=2:len, newregisters(j)=registers(j-1); end; registers = newregi

12、sters; mseq(i) = registers(len); end we save this piece of code as a function, then type stem(mseries(0 0 0 0 1 0 1 0 1 0 0 0 1 0 1) and we get the follwoing graph: Draw the autocorrelation of the generated m-sequence The following code is used to manipulate the correlation of two signals: function

13、r=coorr(seq1,seq2) if nargin=1 seq2=seq1; end N=length(seq1); for k=-N+1:-1 seq2_shift=seq2(k+N+1:N) seq2(1:k+N); r(N+k)=seq1*seq2_shift; end for k=0:N-1 seq2_shift=seq2(k+1:N) seq2(1:k); r(N+k)=seq1*seq2_shift; end Input the following code, then we can get the following graph: mseq= 0 0 0 0 1 0 1 0

14、 1 0 0 0 1 0 1; ind1=find(mseq=0); mseq(ind1)=-1; r1=coorr(mseq, mseq); N=length(mseq); axis =-N+1:N-1; plot(axis,r1) xlabel( k); ylabel( R(k); title( The autocorrelation of M-sequence ); Build up a simulation system of the given figure with the data rate 1bit/s, spreading gain 64 and the carrier fr

15、equency 128Hz.1. Generation of the original data: % SYSTEM REQUIRMENTS %data bit rate : 1 bit/s %carrier frequency: 128Hz %spread gain: 64 clc; clear all; close all; % First of all we need to generate the original data % by using Randn() function, standard normal distribution % and we set the origin

16、al data to be of 1s and -1s data_length=20; % sdefine the length of each users original data numOfUser = 4; % specify the number of the users sumLength = numOfUser*data_length; % the overall data length is 20*4 d = zeros(numOfUser,data_length); % 4*20 double matrix of all zeros randn(state,sum(100*c

17、lock); % make the seed of the function different each time for i=1:numOfUser d(i,:) = sign(randn(1,data_length); % 1*20 double matrix end dd = d(1,:);d(2,:);d(3,:);d(4,:); % 20*4 double matrix % Generate the orthorgnal 4 ordered Walsh code % Where 4 represent the number of users walshCode = hadamard

18、(numOfUser); % call the function hadamard(), walshCode is 4*4 matrix walshCode = walshCode/2; % normalisition w is s = dd*walshCode; %Coding: dd is of the size 20*4; walshCode is of the size 4*4 %s is of the size 20*4 cdmData = reshape(s,1,4*data_length); % cdmDatas size:1*80 for i=1:sumLength % set

19、 sampling frequency to be % fs = 128*8=1024Hz i.e.8sample/T data(1+(i-1)*1024):i*1024)=cdmData(i); % fs/f=1024 samples end % END of step 1.We have generated the original data sequence d of length % equals to 20*numOfUser*1024=819202. Generate the PN sequence g = 41889; % G = 1010001110100001 b14=b13

20、*b9*b8*b7*b5*b0 state =16385 ;% state=100000000000001 140after the first 1 PNlength=64*sumLength; %PN frequency is 64Hz, 64Hz/1Hz = 64. x_code=sign(mgen(g,state,PNlength)-0.5); %turn -1s & 1s for i=1:PNlength PNcode(1+(i-1)*16):i*16)=x_code(i); %16 samples per PNcode end % then we generate a sequenc

21、e of PNcode with the length 64*20*16 = % length(d)3. Spectrum Spreading fmodSig=data.*PNcode; %PNcode: frequency spreading code % fmodSig: frequency modulated signal by PNcode4. BPSK Modulation % carrier frequency: 128Hz cosin signal for i=1:length(data)/8 AI=1; % the amplitude of the carrier signal

22、 dt=2/3; n=0:dt/7:dt; %8 samples per Period of Carrier cI=AI*cos(2*pi*n*1.5); modSig(1+(i-1)*8):i*8)=fmodSig(1+(i-1)*8):i*8).*cI; end % Adding Noise % AWGN channel adding noise to the signal EsNodB = 0:8; sigma = zeros(1,length(EsNodB); for k=1:length(EsNodB) sigma(k) = sqrt( 10.(-EsNodB(k)/10)/2 );

23、 modSigWithNoise = modSig + sigma(k)*randn(1,length(modSig); end % EsNodB = 4; % sigma = sqrt( 10.(-EsNodB/10)/2 ); % modSigWithNoise = modSig + sigma*randn(1,length(modSig);5. BPSK demodulation AI=1; dt=2/3; n=0:dt/7:dt; %8 samples per Carrier Period cI=AI*cos(2*pi*n*1.5); for i=1:length(data)/8 de

24、modSig(1+(i-1)*8):i*8)=modSigWithNoise(1+(i-1)*8):i*8).*cI; end6. Frequency demodulation fdemodSig=demodSig.*PNcode;7. Received data RecovData=zeros(1,length(fdemodSig); value=zeros(1,length(fdemodSig)/1024); avg=zeros(1,length(fdemodSig)/1024); for j=1:(length(fdemodSig)/1024) avg(j) = 2*sum(fdemod

25、Sig(1+(j-1)*1024: j*1024)/1024; %*! integral of sin or cos function need a % multiplication of 2 value(j) = round(avg(j); RecovData(1+(j-1)*1024:j*1024)=value(j); End8. Make judgments. %.Demultiplexing v = reshape(value,4,20); % 4*20 rd = v*walshCode; % 20*4 matrix rd = rd; % 4*20 matrix9. Calculate

26、 the error rate of the whole process error = sum(sum(abs(v-s)/2); errorRate = 100*error/sumLength; disp(The error rate of this process is: ); disp(errorRate);10. Demultiplexing %.Demultiplexing v = reshape(value,4,20); % 4*20 rd = v*walshCode; % 20*4 matrix rd = rd; % 4*20 matrix Conclusion Through

27、the simulation of system with and without noise, with and without spreading spectrum, we can see that if the Es/No is equal, the bit error rate of the system with spreading spectrum is better than the one without spreading spectrum. DSSS has high quality of anti-interference. The DS signal has very wide spectrum, a small fraction of fading could not influence much for the whole signal. DSSS has good ability of multiple addressing.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1