ImageVerifierCode 换一换
格式:DOCX , 页数:27 ,大小:18.51KB ,
资源ID:6567317      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6567317.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Matlab插值算法程序集.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Matlab插值算法程序集.docx

1、Matlab插值算法程序集 Matlab插值算法程序集一、插值算法1.Atken function f = Atken(x,y,x0)syms t;if(length(x) = length(y) n = length(x); else disp(x和y的维数不相等!); return;end %检错y1(1:n) = t; %符号函数数组要赋初值for(i=1:n-1) for(j=i+1:n) y1(j) = y(j)*(t-x(i)/(x(j)-x(i)+y(i)*(t-x(j)/(x(i)-x(j); end y = y1; simplify(y1);endif(nargin = 3)

2、 f = subs(y1(n),t,x0); %计算插值点的函数值else simplify(y1(n); %化简 f = collect(y1(n); %将插值多项式展开 f = vpa(f,6); %将插值多项式的系数化成6位精度的小数end 2.BSample function f0 = BSample(a,b,n,y,y_1,y_N,x0)f0 = 0.0;h = (b-a)/n;c = zeros(n+3,1);b = zeros(n+1,1);for i=0:n-1 if(a+i*h=x0) index = i; break; endend %找到x0所在区间A = diag(4*

3、ones(n+1,1);I = eye(n+1,n+1);AL = I(2:n+1,:);zeros(1,n+1);AU = zeros(1,n+1);I(1:n,:);A = A+AL+AU; %形成系数矩阵for i=2:n b(i,1) = 6*y(i);endb(1) = 6*y(1)+2*h*y_1;b(n+1) = 6*y(n+1)-2*h*y_N;d = followup(A,b); %用追赶法求出系数c(2:n+2) = d;c(1) = c(2) - 2*h*y_1; %c(-1)c(n+3) = c(3)+2*h*y_N; %c(n+1)x1 = (a+index*h-h-

4、x0)/h;m1 = c(index+1)*(-(abs(x1)3)/6+(x1)2-2*abs(x1)+4/3);x2 = (a+index*h-x0)/h;m2 = c(index+2)*(abs(x2)3/2-(x2)2+2/3);x3 = (a+index*h+h-x0)/h;m3 = c(index+3)*(abs(x3)3/2-(x3)2+2/3);x4 = (a+index*h+2*h-x0)/h;m4 = c(index+4)*(-(abs(x4)3)/6+(x4)2-2*abs(x4)+4/3);f0 = m1+m2+m3+m4; %求出插值 3.DCS function f

5、 = DCS(x,y,x0)syms t;if(length(x) = length(y) n = length(x); c(1:n) = 0.0;else disp(x和y的维数不相等!); return;endc(1) = y(1);for(i=1:n-1) for(j=i+1:n) y1(j) = (x(j)-x(i)/(y(j)-y(i); end c(i+1) = y1(i+1); y = y1; endf = c(n);for(i=1:n-1) f = c(n-i) + (t-x(n-i)/f; f = vpa(f,6); if(i=n-1) if(nargin = 3) f =

6、subs(f,t,x0); else f = vpa(f,6); end endend;4.DHfunction fz = DH(x,y,x0,y0,zx,zy,zxy)n = length(x);m = length(y);for i=1:n if(x(i)=x0) index_x = i; break; endend %找到x0所在区间for i=1:m if(y(i)=y0) index_y = i; break; endend %找到y0所在区间hx = x(index_x+1) - x(index_x);hy = y(index_y+1) - y(index_y);tx = (x0

7、- x(index_x)/hx; %插值坐标归一化ty = (y0 - y(index_y)/hy; %插值坐标归一化Hl = (1-tx)2*(1+2*tx) tx*tx*(3-2*tx) tx*(1-tx)2 tx*tx*(tx-1); %左向量Hr = (1-ty)2*(1+2*ty); ty*ty*(3-2*ty); ty*(1-ty)2 ; ty*ty*(ty-1); %右向量C = Z(index_x, index_y) Z(index_x,index_y+1) zy(index_x, index_y) .zy(index_x, index_y+1);Z(index_x+1, in

8、dex_y) Z(index_x+1,index_y+1) zy(index_x+1, index_y) .zy(index_x+1, index_y+1);zx(index_x, index_y) zy(index_x, index_y+1) zxy(index_x, index_y) .zxy(index_x, index_y+1);zx(index_x+1, index_y) zy(index_x+1, index_y+1) zxy(index_x+1, index_y) .zxy(index_x+1, index_y+1); %C矩阵fz = Hl*C*Hr; 5.DLfunction

9、 fz = DL(x,y,Z,x0,y0,eps)n = length(x);m = length(y);for i=1:n if(x(i)=x0) index_x = i; break; endend %找到x0所在区间for i=1:m if(y(i)=y0) index_y = i; break; endend %找到y0所在区间A = 1 x(index_x) y(index_y) x(index_x)* y(index_y); 1 x(index_x+1) y(index_y+1) x(index_x+1)* y(index_y+1); 1 x(index_x) y(index_y+

10、1) x(index_x)* y(index_y+1); 1 x(index_x+1) y(index_y) x(index_x+1)* y(index_y);iA = inv(A);B = iA*Z(index_x,index_y); Z(index_x+1,index_y+1); Z(index_x,index_y+1); Z(index_x+1,index_y);fz = 1 x0 y0 x0*y0*B;6.DTLfunction fz = DTL(x,y,Z,x0,y0)syms s t;f = 0.0;n = length(x);m = length(y);for i=1:n if(

11、x(i)=x0) index_x = i; break; endend %找到x0所在区间for i=1:m if(y(i)=y0) index_y = i; break; endend %找到y0所在区间if index_x = 1 cx(1:3) = index_x:(index_x+2);else if index_x = n-1 cx(1:3) = (index_x-1):(index_x+1); else if abs(x(index_x-1)-x0)abs(x(index_x+2)-x0) cx(1:3) = (index_x):(index_x+2); else cx(1:3)

12、= (index_x-1):(index_x+1); end endend %找到离x0最近的三个x坐标if index_y = 1 cy(1:3) = index_y:(index_y+2);else if index_y = m-1 cy(1:3) = (index_y-1):(index_y+1); else if abs(y(index_y-1)-y0)=abs(y(index_y+2)-y0) cy(1:3) = (index_y):(index_y+2); else cy(1:3) = (index_y-1):(index_y+1); end endend %找到离y0最近的三个y

13、坐标for i=1:3 i1 = mod(i+1,3); if(i1 = 0) i1 = 3; end i2 = mod(i+2,3); if(i2 = 0) i2 = 3; end for j=1:3 j1 = mod(j+1,3); if(j1 = 0) j1 = 3; end j2 = mod(j+2,3); if(j2 = 0) j2 = 3; end f = f+Z(cx(i),cy(j)*(t-x(cx(i1)*(t-x(cx(i2)/(x(cx(i)-x(cx(i1)/(x(cx(i)-x(cx(i2)* . (s-y(cy(j1)*(s-y(cy(j2)/(y(cy(j)-y(

14、cy(j1)/(y(cy(j)-y(cy(j2); %插值多项式 endendfz = subs(f,t s,x0 y0);7.FCZfunction fz = DTL(x,y,Z,x0,y0)syms s t;f = 0.0;n = length(x);m = length(y);for i=1:n if(x(i)=x0) index_x = i; break; endend %找到x0所在区间for i=1:m if(y(i)=y0) index_y = i; break; endend %找到y0所在区间if index_x = 1 cx(1:3) = index_x:(index_x+

15、2);else if index_x = n-1 cx(1:3) = (index_x-1):(index_x+1); else if abs(x(index_x-1)-x0)abs(x(index_x+2)-x0) cx(1:3) = (index_x):(index_x+2); else cx(1:3) = (index_x-1):(index_x+1); end endend %找到离x0最近的三个x坐标if index_y = 1 cy(1:3) = index_y:(index_y+2);else if index_y = m-1 cy(1:3) = (index_y-1):(ind

16、ex_y+1); else if abs(y(index_y-1)-y0)=abs(y(index_y+2)-y0) cy(1:3) = (index_y):(index_y+2); else cy(1:3) = (index_y-1):(index_y+1); end endend %找到离y0最近的三个y坐标for i=1:3 i1 = mod(i+1,3); if(i1 = 0) i1 = 3; end i2 = mod(i+2,3); if(i2 = 0) i2 = 3; end for j=1:3 j1 = mod(j+1,3); if(j1 = 0) j1 = 3; end j2

17、= mod(j+2,3); if(j2 = 0) j2 = 3; end f = f+Z(cx(i),cy(j)*(t-x(cx(i1)*(t-x(cx(i2)/(x(cx(i)-x(cx(i1)/(x(cx(i)-x(cx(i2)* . (s-y(cy(j1)*(s-y(cy(j2)/(y(cy(j)-y(cy(j1)/(y(cy(j)-y(cy(j2); %插值多项式 endendfz = subs(f,t s,x0 y0);8.Gaussfunction f = Gauss(x,y,x0)if(length(x) = length(y) n = length(x);else disp(x

18、和y的维数不相等!); return;endxx =linspace(x(1),x(n),(x(2)-x(1);if(xx = x) disp(节点之间不是等距的!); return;endif( mod(n,2) =1) if(nargin = 2) f = GStirling(x,y,n); else if(nargin = 3) f = GStirling(x,y,n,x0); end endelse if(nargin = 2) f = GBessel(x,y,n); else if(nargin = 3) f = GBessel(x,y,n,x0); end endendfuncti

19、on f = GStirling(x,y,n,x0)syms t;nn = (n+1)/2;f = y(nn);for(i=1:n-1) for(j=i+1:n) y1(j) = y(j)-y(j-1); endif(mod(i,2)=1) c(i) = (y1(i+n)/2)+y1(i+n+2)/2)/2; else c(i) = y1(i+n+1)/2)/2; end if(mod(i,2)=1) l = t+(i-1)/2; for(k=1:i-1) l = l*(t+(i-1)/2-k); end else l_1 = t+i/2-1; l_2 = t+i/2; for(k=1:i-1

20、) l_1 = l_1*(t+i/2-1-k); l_2 = l_2*(t+i/2-k); end l = l_1 + l_2; end l = l/factorial(i); f = f + c(i)*l; simplify(f); f = vpa(f, 6); y = y1; if(i=n-1) if(nargin = 4) f = subs(f,t,(x0-x(nn)/(x(2)-x(1); end endendfunction f = GBessel(x,y,n,x0)syms t;nn = n/2;f = (y(nn)+y(nn+1)/2;for(i=1:n-1) for(j=i+1

21、:n) y1(j) = y(j)-y(j-1); end if(mod(i,2)=1) c(i) = y1(i+n+1)/2)/2; else c(i) = (y1(i+n)/2)+y1(i+n+2)/2)/2; end if(mod(i,2)=0) l = t+i/2-1; for(k=1:i-1) l = l*(t+i/2-1-k); end else l_1 = t+(i-1)/2; l_2 = t+(i-1)/2-1; for(k=1:i-1) l_1 = l_1*(t+(i-1)/2-k); l_2 = l_2*(t+(i-1)/2-1-k); end l = l_1 + l_2;

22、end l = l/factorial(i); f = f + c(i)*l; simplify(f); f = vpa(f, 6); y = y1; if(i=n-1) if(nargin = 4) f = subs(f,t,(x0-x(nn)/(x(2)-x(1); end endEnd9.Hermitefunction f = Hermite(x,y,y_1,x0)syms t;f = 0.0;if(length(x) = length(y) if(length(y) = length(y_1) n = length(x); else disp(y和y的导数的维数不相等!); retur

23、n; endelse disp(x和y的维数不相等!); return;endfor i=1:n h = 1.0; a = 0.0; for j=1:n if( j = i) h = h*(t-x(j)2/(x(i)-x(j)2); a = a + 1/(x(i)-x(j); end end f = f + h*(x(i)-t)*(2*a*y(i)-y_1(i)+y(i); if(i=n) if(nargin = 4) f = subs(f,t,x0); else f = vpa(f,6); end endEnd10.Languagefunction f = Language(x,y,x0)s

24、yms t;if(length(x) = length(y) n = length(x); else disp(x和y的维数不相等!); return;end %检错f = 0.0;for(i = 1:n) l = y(i); for(j = 1:i-1) l = l*(t-x(j)/(x(i)-x(j); end; for(j = i+1:n) l = l*(t-x(j)/(x(i)-x(j); %计算拉格朗日基函数 end; f = f + l; %计算拉格朗日插值函数 simplify(f); %化简 if(i=n) if(nargin = 3) f = subs(f,t,x0); %计

25、算插值点的函数值 else f = collect(f); %将插值多项式展开 f = vpa(f,6); %将插值多项式的系数化成6位精度的小数 end endend11.Nevillefunction f = Neville(x,y,x0)syms t;if(length(x) = length(y) n = length(x);else disp(x和y的维数不相等!); return;endy1(1:n) = t;for(i=1:n-1) for(j=i+1:n) if(j=2) y1(j) = y(j)+(y(j)-y(j-1)/(t-x(j-i)/(t-x(j)*(1-(y(j)-

26、y(j-1)/y(j); else y1(j) = y(j)+(y(j)-y(j-1)/(t-x(j-i)/(t-x(j)*(1-(y(j)-y(j-1)/(y(j)-y(j-2); end end y = y1; if(i=n-1) if(nargin = 3) f = subs(y(n-1),t,x0); else f = vpa(y(n-1),6); end end end12.Newtonfunction f = Newton(x,y,x0)syms t;if(length(x) = length(y) n = length(x); c(1:n) = 0.0;else disp(x和y

27、的维数不相等!); return;endf = y(1);y1 = 0;l = 1; for(i=1:n-1) for(j=i+1:n) y1(j) = (y(j)-y(i)/(x(j)-x(i); end c(i) = y1(i+1); l = l*(t-x(i); f = f + c(i)*l; simplify(f); y = y1; if(i=n-1) if(nargin = 3) f = subs(f,t,x0); else f = collect(f); %将插值多项式展开 f = vpa(f, 6); end endend13.Newtonbackfunction f = New

28、tonback(x,y,x0)syms t;if(length(x) = length(y) n = length(x); c(1:n) = 0.0;else disp(x和y的维数不相等!); return;endf = y(n);y1 = 0;xx =linspace(x(1),x(n),(x(2)-x(1);if(xx = x) disp(节点之间不是等距的!); return;endfor(i=1:n-1) for(j=i+1:n) y1(j) = y(j)-y(j-1); end c(i) = y1(n); l = t; for(k=1:i-1) l = l*(t+k); end; f = f + c(i)*l/factorial(i); simplify(f

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1