ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:22.48KB ,
资源ID:6303941      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6303941.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(完整版SigmaDeltaADC原理简单理解doc.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

完整版SigmaDeltaADC原理简单理解doc.docx

1、完整版SigmaDeltaADC原理简单理解doc模数转换器概述过采样 ADC 的基本结构包括抗混迭滤波器、调制器及降采样低通滤波器,如图 3.1所示。抗混迭滤波器将输入信号限制在一定的带宽之内,对于过采样 ADC ,由于输入信号带宽 f0 远小于采样频率 f s 的一半,抗混迭滤波的通带到阻带之间的过渡带 ( fs 2 f0 )较宽,缓解了其设计要求,可用低阶模拟滤波器实现。调制器将过采样信号转化为高速、 低精度的数字信号。 然后降采样滤波器将其转变为 Nyquist频率的高精度信号。 调制器可以抑制过采样率 ADC 电路引入的噪声,非线性等误差, 这样缓解了它对模拟电路的精度要求。 另外,

2、对于开关电容电路实现的过采样 ADC ,无需采用采样保持电路。X(t)H(f)Ynf 0fsMfs /M抗混迭滤波器调制 器D/A降采样低通滤波器模拟部分数字部分图 3.1过采样 ADC 的结构图本章首先介绍了ADC 的一些主要性能指标、调制器的工作原理、基本结构,然后介绍了调制器的非理想因素与误差来源,最后介绍了未深入研究的问题与宽带ADC 研究现状。3.1 ADC 的一些主要性能指标ADC 的主要性能指标为:动态范围 (DR) 、信噪比 (SNR)、信噪失真比(SNDR)、有效位数 (ENOB) 以及过载度 (OL) 。如图3.2所示,图中横轴为输入信号的归一化值,即 Vin / Vref

3、 ,纵轴为 SNR或SNDR,二者均用 dB表示。从图 3.2中可以看出,当输入信号幅度较小时, SNR和SNDR大小是相等的;随着输入幅度的增加,失真将会降低调制器的性能,因而在输入幅度较大时, SNDR会比 SNR小一些。图 3.2显示了非理想调制器的性能比理想调制器的性能差一些:一方面是由于实际调制器的有限增益引起性能成呈线性下降; 另一方面是由于实际调制器过载而造成的性能下降。BdRDNSRNSLinear effectsPrematureOverloadtorlaoduPal MrRPdulatoDRIdeNNal MoSNRSSReSNDRDR OL 0图 3.2 典型的 转换器的

4、性能图调制器各相主要性能指标 60 介绍如下:1信噪比 (SNR):是指在一定的输入幅度时,转换器输出信号能量与噪声能量的比值。转换器能获得的最大信噪比为峰值信噪比 (PSNR)。2信噪失真比 (SNDR) :是指在一定的输入幅度时,转换器输出信号能量与噪声、失真之和的比值。转换器能获得的最大信噪失真比为峰值信噪失真比(PSNDR)。3动态范围 (DR) :输入动态范围 ( DRi )是指转换器最大输入信号和能检测到的最小输入信号能量的比值,这里最大信号能量定义为 PSNR下降 6dB时的输入值,而最小信号即为背景噪声能量值。输出动态范围 ( DR0 )定义为最大输出信号能量和最小输出信号能量

5、的比值,等于 PSNR。4有效位数 (ENOB) :是根据实际测量的 PSNDR来计算的,如下式所示:ENOBPSNDR 1.766.02 (3.1)5过载度 (OL) :是指使调制器过载时的最小归一化输入值,其对应的 SNR比PSNR小6dB。与Nyquist速率 ADC 不同,过采样速率 ADC 不关心积分非线性 (INL) 和差分非线性 (DNL) 两项指标。这是因为这两项指标都是衡量采样点和采样点之间的精度,而过采样率 ADC 的输出都与其前一个状态有关,因而 INL 和 DNL 在这种情况下是没有意义的。3.2 ADC 提高信噪比的方法转换器主要是通过过采样和噪声整形来提高信噪比的,

6、 从而获得高精度。此外,采用多位量化器也是目前提高宽带 转换器信噪比的一种基本方法。3.2.1 过采样转换器采用远远高于 Nyquist频率的时钟对输入信号进行采样,使得量化噪声的功率分布在更宽的频带内, 这样就减少了信号频带内的噪声。 这也是过采样 ADC 的基本原理。图3.3给出了在过采样率 fs 和Nyquist采样率 2 fb 下信号和量化噪声功率频谱图。由图可见,过采样率下的信号带宽内的量化噪声功率要比 Nquist采样率下的小得多。在对输入信号进行量化时, 会引入量化误差。 假设量化噪声 e随机均匀分布,且与输入信号无关,即为白噪声,其功率 61 为:12eq2/ /22 e2 d

7、e(3.2)12式 (3.2)中为量化间距。噪声功率密度为:heeq2fs12 fs(3.3)其中 f s 为采样频率,可见量化噪声总功率与采样频率无关, 但噪声功率谱密度却与采样频率有关, 提高采样频率可以降低单位频带内的功率谱密度。 我们定义过采样率 OSR为:OSRfs2 fb(3.4)这样,在过采样率下,输出的信号频带内的总量化噪声功率为:f b22N qdff bhe(3.5)12OSR从式 (3.5)可以看出,提高过采样率可以降低信号带宽内的噪声功率。 采样率每提高一倍,信号带宽内的噪声功率降低 3dB,在输入信号功率不变的情况下,相当于增加了 0.5位的分辨率。当 OSR 256

8、 时,动态范围增加 24dB,即相当于提高4位分辨率。但这种指数式增长的过采样率很快就达到电路实现的极限,因此在实际电路中,通常 OSR不会超过 512。Amplitudeerms2Qnfb fs / 2 f s Frequency图 3.3量化器信号和噪声频谱图3.2.2 噪声整形噪声整形可以进一步提高转换器的信噪比。 利用高通滤波器的特性, 将低频部分的量化噪声移到高频, 减少了信号带宽内的噪声。 高通滤波器的阶数和采样频率越高,信号带宽内的噪声就越小。实现噪声整形的一常见方法就是采用 调制器。如图 3.4(a)所示,它包括一个滤波器 H ( f ) 、一个 B位ADC 和一个 B位DAC

9、 。其线性模型如图 3.4(b)所示,图中假设 D/A 是理想的。调制器的传输函数为:Y (z)H ( z)1Eq ( z)X (z)1 H ( z)1H (z)(3.6)其中 X ( z) 、 Eq ( z) 分别为信号和量化噪声的 Z域变换。定义信号传输 STF(z)和噪声传输函数 NTF(z)分别为 (3.7)-(3.8):k H (z)STF ( z)1 k H (z)1NTF ( z)1 k H ( z)(3.7)(3.8)显然,如果选择 H(z) 在信号带宽 0 f b 内有很大增益,而在信号带宽外增益很小,则 STF ( z) 趋近于 1, NTF ( z) 趋近于 0。这样输入

10、信号就被直接输出,几乎不受影响,而量化噪声却被整形压缩。e nH(f) H(f) KD/A( a) (b)图 3.4 调制器及其线性模型L阶噪声整形调制器的信号和噪声传输函数为:STF ( z)z LNTF ( f )1 z 1 LNTF ( f )22 L sin2L ( f / f s )(3.9)则信号带宽内的量化噪声能量为:22 L1N q12 (2 L 1) OSR(2 L 1)(3.10)一般的,过采样率每提高一倍,信号带宽内的噪声功率降低3(2 L1)dB ,在输入信号功率不变的情况下,相当于提高了L 0.5 位的分辨率。图3.5给出了一阶、二阶、三阶调制器的噪声传输函数(公式

11、3.9)的幅频响应曲线。与一阶调制器相比, 二阶调制器的 NTF将低频带内的量化噪声进一步压缩,而对高频带内的量化噪声进一步放大, 即量化噪声进一步 “推”向更高频段,阶数越高,效果越明显。87third-order65|)f(F4TN|second-order32first-orderno shaping100.050.10.150.20.250.30.350.40.450.50f / fs图3.5一阶、二阶、三阶调制器的噪声传输函数的幅频响应3.2.3 多位量化器采用多位量化器可以有效的提高信噪比 6266。随着转换信号带宽的不断提高,通过过采样和噪声整形技术不能完全满足设计目标的要求。

12、将调制器中的量化器位数提高,也即减小了 ,这样量化噪声的功率谱密度下降了。实际上,量化器位数每增加一位, 调制器的有效位数也增加一位。 此外,量化器位数提高,可以提高高阶调制器的稳定性。理想的 L阶、 B位调制器的动态范围如 (3.11)式所示 60 :3 (2 B2 L 1DR1)2 (2 L1) OSR2(3.11)如果对多位量化器的非线性不作特殊的技术处理, 量化器的非线性将直接影响调制器的性能 67 。后续章节将会分析不同降低量化器非线性的技术。3.3 调制器结构调制器大致可以分为单环结构和级联结构两种。单环结构采用一个 A/D 转换器、一个 D/A 转换器和一系列串连的积分器组成。一

13、阶、二阶都属于单环结构。级联结构 (MASH) 是由一系列的低阶单环调制器级联而成。此外,单环和级联结构都可以采用一位或多位 ADC 和 DAC ,通过降低量化噪声,达到提高信噪比的目的。不同结构有不同的优缺点,如表 3.1所示。表3.1调制器结构的比较单环结构级联结构稳定性有条件稳定稳定过采样率 (OSR)适用于高的 OSR适用于低的 OSR动态范围 (DR)与理想 DR相差较远与理想 DR接近对电路的失配及电荷低高泄漏的敏感性电路组成全模拟模拟和数字3.3.1 单环结构最简单、无条件稳定的 调制器便是一阶噪声整形实现的单环调制器。如图 3.6所示,它由一个积分器、 一个一位的 ADC 和一

14、个 1位的 DAC 组成。输入信号X n 与输出信号经 DAC 转换后的信号相减,经积分器积分后进入量化器。积分器的传输函数为 z 1 /(1 z 1 ) 。则调制器的输出可以表示为:Y (z) X ( z)z 1E( z)(1 z1 )(3.12)Integrator e n-1Z1-bitDAC图 3.6 一阶 调制器的原理图噪声传输函数为:NTF (z) 1 z 1NTF ( f )1 z 1z ej 2f / f2sin(f / fs)(3.13)s信号带宽内的噪声功率为:22N q13 OSR3(3.14)122B2假设满量程正弦输入信号的能量为Ps12 / 8,得到一阶调制器的最大

15、信噪比为:PSNR 10log 10Ps10log 1032B210log 1032 OSR31N q2(3.15)由式 (3.15)可知,采用一阶噪声整形可以降低带宽内的噪声功率:过采样率每提高一倍,信噪比提高 9dB,相当于提高了 1.5位的分辨率。调制器是一个反馈系统,从时域角度讲,反馈不断使输出 Yn 逼近输入X n 。对式 (3.12)做差分变换可得输入输出差分方程:Y n X n 1 EQ n EQ n 1(3.16)可见,调制器的当前输出等于延迟了一个时钟的输入加上量化误差的一阶差分。图3.7(a)为一阶调制器输入 X n 和输出 Yn 的瞬态仿真结果。不考虑实际电路中的非理想因

16、素, 采样频率 Fs 48Mhz ,过采样率 OSR 12 ,输入信号频率 Fin 199.21875Khz 。很显然, 在正弦信号值较大时, 输出 1的几率就大, 反之,1出现的几率就大。10.80.6 0.4Ve 0.2dutil 0pm-0.3A-0.4-0.6-0.8-11 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5Times 10- 5(a)(b)图3.7 一阶调制器的仿真(a) 输入为正弦时调制器的输出; (b)输出信号的频谱图3.7(b)为对输出码流 Y n 的4096点FFT 分析结果。图中,能量最大的频点位置代表了输入信号频率 Fin 199.21875Khz ,整个噪声呈 30dB/dec衰减,这与一阶噪声整形的衰减相符;另外,在信号的倍频点出现很多谐波 (tones),这说明量化器的输出和输入信号相关性很高, 量化噪声不再是白噪声。 大量谐波的出现是一阶 调制器的缺点 61,68。高阶 调制器可以减小输出频谱中的谐波, 这是因为高阶 调制器可以使量化器输入和输入信号的相关性大大降低。由于一阶 调制器会出现谐波的特性,这种结构很少用于单环调制器。然而在下章节讲的级联调制器中, 第二、第三级经常采用一阶调制器。 这是因为在级联调制器中, 第二、三级输入的信号为第一级输出的量化噪声, 一阶调制器将不受谐波的影响。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1