ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:19.60KB ,
资源ID:6295077      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6295077.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AMPK和运动骨骼肌摄取葡萄糖和胰岛素敏感性.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

AMPK和运动骨骼肌摄取葡萄糖和胰岛素敏感性.docx

1、AMPK和运动骨骼肌摄取葡萄糖和胰岛素敏感性AMPK和运动:骨骼肌摄取葡萄糖和胰岛素敏感性AMPK是一个进化保守的细胞能量感受器,在运动过程中被激活。激活的AMPK可以增加骨骼肌葡萄糖摄取、脂肪酸氧化、线粒体生物合成和胰岛素敏感性,这些过程在肥胖患者体内减弱,从而易引发胰岛素抵抗。运动促进葡萄糖摄取的机制涉及AMPK,但不明确AMPK是否参与运动提高胰岛素敏感性的过程。了解这些代谢过程将为治疗肥胖和胰岛素抵抗提供新的契机,故本综述将讨论AMPK如何参与调节骨骼肌代谢(葡萄糖的摄取和胰岛素敏感性)。AMPK和运动运动时,为了给肌肉收缩提供足够的能量,骨骼肌中ATP代谢速度增加(100倍)1。在这

2、种情况下,AMP和ADP浓度迅速增加,而ATP水平只略有下降。AMPK是细胞能量感受器,能被AMP和ADP激活,与此相一致,啮类动物和人类的骨骼肌中AMPK在运动过程中被激活2-5。运动通过AMPK介导的胰岛素非依赖性机制调节葡萄糖摄取6。重要的是,在2型糖尿病患者的骨骼肌中,运动调节GLUT4转运的通路没有受损7,并且,运动可以提高胰岛素的敏感性。由于这些原因,运动通常被建议用于预防和治疗胰岛素抵抗。因此,理解运动调节葡萄糖的摄取潜在机制是一个重要的研究领域。骨骼肌摄取葡萄糖的调节胰岛素促进骨骼肌摄取葡萄糖 胰岛素生物学效应通过信号转导而实现,随着分子生物学的发展,人们对胰岛素信号转导途径中

3、的的系列级联反应逐步明确。简言之,胰岛素通过IRIRSPI3KAkt/PKC/AS160信号通路调节GLUT4转运到细胞膜上,从而促进葡萄糖的摄取。运动促进骨骼肌摄取葡萄糖 同胰岛素,运动也是通过调节GLUT4转运到质膜和横小管,增加骨骼肌葡萄糖摄取。但是,在骨骼肌中,胰岛素和运动/收缩通过不同的机制调节对葡萄糖的摄取。此观点来自于以下发现:1)PI3激酶抑制剂渥曼霉素(Wortmannin)抑制胰岛素刺激的葡萄糖摄取,但不抑制收缩刺激的葡萄糖摄取。收缩不促进IRS-1自身磷酸化或增加PI3激酶的活性8-11。2)基因敲除主要的胰岛素信号蛋白IRS1和AKT2,不影响收缩介导的葡萄糖摄取42-

4、43。3)胰岛素与收缩刺激葡萄糖的摄取有叠加作用14-15。4)胰岛素抵抗患者和啮齿动物,收缩介导的葡萄糖摄取不受影响16-19。相反,也有研究发现离体骨骼肌收缩使Akt磷酸化水平上升,并且Goodyear等人报道,PI3激酶抑制剂Wortmannin和LY294002可抑制收缩引起的Akt活性增加。究竟运动/骨骼肌收缩是否激活PI3K-Akt还有待进一步的研究证实。慢性运动训练虽然有研究表明肥胖者体内的AMPK活性和蛋白表达降低,但慢性运动训练仍能增强AMPK的蛋白表达和活性30。因此,AMPK可能通过TBC1D1 和TBC1D4 的磷酸化,增强胰岛素的敏感性。基于人类和大鼠的研究都表明,慢

5、性运动训练增加了TBC1D4 的蛋白表达和PAS磷酸化,这一结果支持了上述观点。正常情况下,肥胖2型糖尿病患者骨骼肌中TBC1D4的磷酸化被削弱,但10周的耐力训练可以使TBC1D4的磷酸化恢复到非糖尿病患者的水平31。目前尚不知TBC1D1是否有类似的发现。有趣的是,旨在为肥胖者减重的两周的饮食干预改善了胰岛素敏感性,却没有影响TBC1D1的磷酸化。而相反研究报道,饮食干预的确增加了TBC1D1 Ser231和Ser660,却没有像锻炼那样增加Ser700或PAS的磷酸化32。肥胖的2型糖尿病患者的耐力训练和健康男性的耐力训练都导致了AMPK 3表达减少33。而敲除3亚基则会损害锻炼后的糖元

6、合成。一种可能的解释是,3表达的减少是一种对运动的应激反应,提高了机体氧化能力和脂肪氧化,而增加糖原利用率。近期有研究认为,考虑到3的表达减弱,AMPK 活性水平的增加可能是由于与1有关的复合物的形成。结论总之,AMPK在运动调节葡萄糖摄取过程中起重要作用,并可能参与急性和慢性两种运动的胰岛素增敏作用。许多研究已经提出了一些介导运动的胰岛素增敏作用的可能机制,但明确定义AMPK在其中的作用需要进一步的研究。运动为健康提供无限益处,是预防和治疗肥胖诱导的胰岛素抵抗最经济有效的方法之一。因此,未来关于运动的胰岛素增敏作用机制的研究至关重要,它可以为相关疾病的药物和非药物(如运动)治疗的发展提供新的

7、策略。参考文献1 Sahlin K, Tonkonogi M and Soderlund K. Energy supply and muscle fatigue in humansJ. Acta Physiol Scand, 1998, 162:261-266. 2 Hayashi T, Hirshman MF, Kurth EJ, Winder WW and Goodyear LJ. Evidence for 5 AMP-activated protein kinase mediation of the effect of muscle contraction on glucose tran

8、sportJ. Diabetes, 1998, 47:1369-1373. 3 Hutber CA, Hardie DG and Winder WW. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinaseJ. Am J Physiol, 1997, 272:E262-266.4 Ihlemann J, Ploug T, Hellsten Y and Galbo H. Effect of tension on contraction-i

9、nduced glucose transport in rat skeletal muscleJ. Am J Physiol, 1999, 277:E208-214. 5 Rasmussen BB, Hancock CR and Winder WW. Postexercise recovery of skeletal muscle malonyl-CoA, acetyl-CoA carboxylase, and AMP-activated protein kinaseJ. J Appl Physiol, 1998, 85:1629-1634. 6 ONeill HM, Maarbjerg SJ

10、, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA and Steinberg GR. AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake dur

11、ing exerciseJ. Proc Natl Acad Sci U S A, 2011, 108:16092-16097. 7 Kennedy JW, Hirshman MF, Gervino EV, Ocel JV, Forse RA, Hoenig SJ, Aronson D, Goodyear LJ and Horton ES. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetesJ. Diabet

12、es, 1999, 48:1192-1197.8 Yeh JI, Gulve EA, Rameh L and Birnbaum MJ. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transportJ. J Biol Chem, 1995, 270:2107-2111. 9 Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Gree

13、n K, Stewart A, Hart K, Schinner S, Sethi JK, Yeo G, Brand MD, Cortright RN, ORahilly S, Montague C and Vidal-Puig AJ. Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivoJ. Biochem J, 2003, 373:155-16

14、5. 10 Lund S, Holman GD, Schmitz O and Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulinJ. Proc Natl Acad Sci U S A, 1995, 92:5817-5821. 11 Brozinick JT, Jr. and Birnbaum MJ. Insulin, but not contraction

15、, activates Akt/PKB in isolated rat skeletal muscleJ. J Biol Chem, 1998, 273:14679-14682.12 Dumke CL, Wetter AC, Arias EB, Kahn CR and Cartee GD. Absence of insulin receptor substrate-1 expression does not alter GLUT1 or GLUT4 abundance or contraction-stimulated glucose uptake by mouse skeletal musc

16、leJ. Horm Metab Res, 2001, 33:696-700. 13 Sakamoto K, Arnolds DE, Fujii N, Kramer HF, Hirshman MF and Goodyear LJ. Role of Akt2 in contraction-stimulated cell signaling and glucose uptake in skeletal muscleJ. Am J Physiol Endocrinol Metab, 2006, 291:E1031-1037. 14 Constable SH, Favier RJ, Cartee GD,

17、 Young DA and Holloszy JO. Muscle glucose transport: interactions of in vitro contractions, insulin, and exerciseJ. J Appl Physiol, 1988, 64:2329-2332. 15 Gao J, Ren J, Gulve EA and Holloszy JO. Additive effect of contractions and insulin on GLUT-4 translocation into the sarcolemmaJ. J Appl Physiol,

18、 1994, 77:1597-1601. 16 Martin IK, Katz A and Wahren J. Splanchnic and muscle metabolism during exercise in NIDDM patientsJ. Am J Physiol, 1995, 269:E583-590. 17 Han X, Ploug T and Galbo H. Effect of diet on insulin- and contraction-mediated glucose transport and uptake in rat muscleJ. Am J Physiol,

19、 1995, 269:R544-551.18 King PA, Betts JJ, Horton ED and Horton ES. Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscleJ. Am J Physiol, 1993, 265:R447-452. 19 Brozinick JT, Jr., Etgen GJ, Jr., Yaspelkis BB, 3rd and Ivy JL. Contraction-activated glucose upta

20、ke is normal in insulin-resistant muscle of the obese Zucker ratJ. J Appl Physiol, 1992, 73:382-387.20 Arias EB, Kim J, Funai K and Cartee GD. Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscleJ. Am J Physiol Endocrinol Metab, 2007, 292:E1191-1200.21

21、Funai K, Schweitzer GG, Castorena CM, Kanzaki M and Cartee GD. In vivo exercise followed by in vitro contraction additively elevates subsequent insulin-stimulated glucose transport by rat skeletal muscleJ. Am J Physiol Endocrinol Metab, 2010, 298:E999-1010.22 Howlett KF, Mathews A, Garnham A and Sak

22、amoto K. The effect of exercise and insulin on AS160 phosphorylation and 14-3-3 binding capacity in human skeletal muscleJ. Am J Physiol Endocrinol Metab, 2008, 294:E401-407. 23 Pehmoller C, Treebak JT, Birk JB, Chen S, Mackintosh C, Hardie DG, Richter EA and Wojtaszewski JF. Genetic disruption of A

23、MPK signaling abolishes both contraction- and insulin-stimulated TBC1D1 phosphorylation and 14-3-3 binding in mouse skeletal muscleJ. Am J Physiol Endocrinol Metab, 2009, 297:E665-675. 24 Jakobsen SN, Hardie DG, Morrice N and Tornqvist HE. 5-AMP-activated protein kinase phosphorylates IRS-1 on Ser-7

24、89 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide ribosideJ. J Biol Chem, 2001, 276:46912-46916. 25 Zakikhani M, Blouin MJ, Piura E and Pollak MN. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cellsJ. Breast Cancer Res Trea

25、t, 2010, 123:271-279. 26 Chopra I, Li HF, Wang H and Webster KA. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscleJ. Diabetologia, 2012, 55:783-794. 27 Kamon J, Yamauchi T, Terauchi

26、 Y, Kubota N and Kadowaki T. The mechanisms by which PPARgamma and adiponectin regulate glucose and lipid metabolismJ. Nihon Yakurigaku Zasshi, 2003, 122:294-300. 28 Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle

27、F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB and Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinaseJ. Nat Med, 2002, 8:1288-1295. 29 Geiger PC, Hancock C, Wright DC, Han DH and Holloszy JO. IL-6 increases muscle insulin sen

28、sitivity only at superphysiological levelsJ. Am J Physiol Endocrinol Metab, 2007, 292:E1842-1846.30 Lee-Young RS, Canny BJ, Myers DE and McConell GK. AMPK activation is fiber type specific in human skeletal muscle: effects of exercise and short-term exercise trainingJ. J Appl Physiol, 2009, 107:283-

29、289. 31 Vind BF, Pehmoller C, Treebak JT, Birk JB, Hey-Mogensen M, Beck-Nielsen H, Zierath JR, Wojtaszewski JF and Hojlund K. Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exerci

30、se-trainingJ. Diabetologia, 2011, 54:157-167. 32 Jessen N, An D, Lihn AS, Nygren J, Hirshman MF, Thorell A and Goodyear LJ. Exercise increases TBC1D1 phosphorylation in human skeletal muscleJ. Am J Physiol Endocrinol Metab, 2011, 301:E164-171. 33 Frosig C, Jorgensen SB, Hardie DG, Richter EA and Wojtaszewski JF. 5-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscleJ. Am J Physiol Endocrinol Metab, 2004, 286:E411-417.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1