ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:682.81KB ,
资源ID:6226392      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6226392.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(外文翻译从生态加工技术对攻丝的研究大学论文.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

外文翻译从生态加工技术对攻丝的研究大学论文.docx

1、外文翻译从生态加工技术对攻丝的研究大学论文外文资料翻译译文从生态加工技术对攻丝的研究摘 要 这项研究是关于攻螺纹(扭矩,攻丝,磨损,工作硬度等)的加工特性。在生态加工技术操作下,涂有TiN的MMC(铝合金金属复合材料)攻螺丝形成的攻丝得到了调查,并与没有涂层的特性进行了比较。下面的结果就是从这份研究中得到的:1.TiN涂层攻丝的刀具寿命是没有攻丝的四倍;2.有TiN涂层的攻丝形成的螺纹比没有的加工硬化要低。关键词:攻丝; 攻螺丝; 螺纹; 生态加工; 钻孔1引言螺栓、螺钉机械连接中的螺纹是机械部件的最重要紧固系统之一。螺纹制造有很多种方法,特别攻螺丝是用来生产内螺纹的有效的技术。最近,每年都强

2、调增加生产力。据说现在的车间里,最重要和最严重的问题是提高生产力。怎样改善孔加工(钻/铰孔和攻丝)已成为一个严重的问题。传统的刀具材料限制了生产力的提高,如高速钢刀具加工铝合金金属复合材料(MMC)时刀具寿命很短由于碳化硅粒子的腐蚀天性。因此,刀具的磨损和破坏阻碍了生产力的提高。为了实现理想的生产力,攻丝已经吸引了车间工程师的注意。在这项研究中,用攻丝加工MMC,利用攻丝(扭矩,攻丝磨损,工作硬度等)的切割特点, 有TiN涂层和没有涂层的都进行了调查。 2. 实验方法2.1实验装置攻丝试验在辛辛那提5NC-MC (5HP)进行。该(钻孔和攻丝) 仪器和数据采集系统如图2.1。切削力(推力和扭矩

3、)测定使用三个类型9273 压电电力测功器和相应的场所用5007电荷放大器放大。得到的信号,然后传递到A / D转换器AZI-16-12 ,连接到个人电脑。切削力测量安装如图2.2。2.2工件,钻及塔在本实验中使用的工件是铝合金(2618 MMC)的增强,15碳化硅颗粒。形成无槽丝锥的螺纹是M10如图2.3和两种类型的攻丝被用来在调查过程中。攻丝的形状类似于螺钉的形状(M10,孔距1.5),无论有没有氮化钛涂层。定位孔的直径9.3mm,用于所有试验和聚晶金刚石攻丝钻孔(高速钢硬质合金碳化钨和聚晶金刚石钻孔)用在所有测试。本实验中用的钻头如图2.4。图2.1 窃听器和数据采集仪器 图2.2 Sc

4、hmatic图的窃听系统 图2.3 水龙头用于这项工作2.3仪表和检测方法的线程线程的估计是用螺纹规来衡量。结果被分为A等和B等 1 。硬铝合金 2 螺纹深度是攻丝直径的1.4倍。甲等-质量:直径通过整个螺纹测量。乙等-质量:直径至少15毫米。图2.5是显示的直径指标(M101.5 ISO 6H)。2.4实验特性攻丝试验时,切削速度(攻丝的转速)是215 rpm和进给速度0.1mm/rev (322.5mm/min)。冷却油(氯和硫免费热切割石油)手动供应。3.实验结果与讨论 在M10攻丝操作的推力和扭矩信号显示在图3.1 。结果表明,随着螺纹扣数的形成,扭矩增大,离开孔时减小。然而,可以看到

5、几乎没有推力的增加。图2.4 形状的聚晶金刚石钻头 图2.5 螺纹规3.1转矩比较图3.2显示是先前所提到的有TiN涂层和没有涂层的第1孔和第8孔攻丝的扭矩信号。图2.1 参数确定图3.1 图切削力信号根据窃听测试扭矩 图3.2 比较扭矩信号(第1洞和第8洞)与扭矩在攻丝操作的初始阶段显示推力和扭矩的增加。然而,当螺纹成形进入全速时,推力显示出下降的趋势伴随着扭矩的增加和攻丝缩回,在螺纹孔口也可以看到负扭矩的出现。图3.1负推力值是攻丝偏离中心的结果是因为一方不正当的工件,刀具的安装或定位空的表面粗糙度。 上述不确定的因素是定位孔的表面粗糙度。当有TiN涂层第一孔的攻螺纹的攻丝扭矩值8.7 N

6、m而没有涂层的值是11.2Nm,得到扭矩信号。因而,第一孔有涂层的相比没有涂层的扭矩减少了28 。而对第8孔有TiN涂层的扭矩相比没有涂层减少了52 。初始阶段和在攻丝突破点前扭矩信号的比较表明,没有涂层的攻丝扭矩减少要明显于有TiN涂层的攻丝。可以说,就形成的攻丝而言,在车螺纹时工作是均匀分布在刮削端。扭矩的比较结果总结在图3.3 。结果表明,有TiN涂层的攻丝扭矩一般低于那些没有涂层的攻丝。3.2螺纹形式的比较有TiN涂层和没有涂层的攻丝的螺纹形式如图3.4 。在螺纹孔, ,位置的横截面的放大图像以及1,4,8号孔作了比较。图3.4是不同位置螺纹的照片模型,而图3.5是八号孔放大的图像。可

7、以从图3.5 中看出,有TiN涂层攻丝形成的螺纹的侧面 没有异常。相反,没有涂层表明孔的进口和出口相应的号和号位置无规律。图3.3 比较扭矩信号同类型 图3.4 阐明的轴向截面建制线程为了验证上述的意见,对孔和进行详细的分析进行。结果总结在图3.6 。图3.6(a)和(b)给出了1号和8号螺纹孔各自的和位置的结果。可以观察图3.6(a),有TiN涂层的攻丝齿形远远优于没有涂层的。3.3比较加工硬化当采用有TiN涂层和没有涂层的攻丝车螺纹时,研究比较加工硬化的严重性。本研究结果归纳于图3.7 。选用了两种类型中1号攻丝。 有TiN涂层和没有涂层的结果分别在图3.7(a)和(b)。用能受100 g

8、w的硬度测量硬度仪测量硬度。结果表明,有TiN涂层的攻螺纹的硬度低于没有涂层的。上述结果表明,在以下几个方面,如螺纹形式和加工硬化等,有TiN涂层的攻丝优于没有涂层的攻丝。图3.5 比较线程形式 图3.6 比较扩大线程形式3.4刀具寿命的比较有TiN涂层和没有涂层的攻丝被用来调查性能和攻丝的刀具寿命一样高。每种类型的攻丝反复进行3次试验,。结果总结在图3.8 。螺纹规读数用A,B值评估。结果表明,在刀具寿命达到限制前,螺纹孔的平均数,是没有TiN涂层攻丝的X = 13和有涂层攻丝的X = 49。有TiN涂层攻丝的刀具寿命是没有涂层的3.8倍。3.5比较塔磨损图3.9显示各种类型攻丝的刀具磨损,

9、在实验中车螺纹后如图3.8所示。应当指出的是,所有用于比较的攻丝已充分达到刀具寿命。有TiN涂层和没有涂层的攻丝分别如图3.9(a)和(b),。可以看出,所有攻丝的刀具磨损点。此外,可以看到大量的磨损在分界线上。有TiN涂层和没有涂层攻丝的比较,如放大点,结果表明,后者的磨损明显高于前者。就有TiN涂层攻丝来说,在刀具磨损区可以看到覆盖的TiN涂层。图3.7 比较硬度分布 图3.8 用攻丝的刀具寿命的比较 图3.9 用攻丝的刀具磨损比较4.结论4.1有TiN涂层的刀具的寿命大约是没有涂层的刀具寿命的4倍。 4.2和没有TiN涂层的刀具相比,有涂层刀具的扭转力下降了28 。 4.3和没有TiN涂

10、层的刀具相比,带有涂层的齿形螺纹刀具则显示出更少的不规则性。 4.4有TiN涂层的刀具的硬度低于没有涂层的刀具。 4.5从以上结果显示, 有TiN涂层的刀具在以下方面优于没有涂层的刀具:刀具寿命,螺纹样式和加工硬化等。参考文献1 WOLFGANGSTRACHE : Alternative Strategies for the Production of Threads in Aluminum-based SIC Reinforced Metal Matrix Composite (MMC) Alloy,1993.2 Beitz.W : Dubbel-Taschhenbuch fuer den

11、Maschinenbau. ISBN 3-540-52381-2, (1990), G15.外文原文A Study on Tapping Viewed from Eco-Machining TechnologyAbstractThis study deals with machining characteristics of thread tapping (torque, tap, wear, workhardness etc.) The tapping of MMC (aluminum alloy metal matrix composite) with TiN coated forming

12、 taps under eco-machining technology operation, where chips are not produced and ejected from the tap flute, was investigated and compared with the characteristics during uncoated tapping. The following results are obtained from this study. 1.The tool life of TiN coated taps was 4 times longer than

13、that of uncoated tap;2.Threads formed with the TiN coated taps exhibit lower work hardening than those formed with uncoated taps.Keywords: Tap; Tapping; Thread; Eco-Machining; Drilling1. IntroductionThreads form the mechanical joint of a boltscrew connection, which is one of the most important faste

14、ning systems for mechanical components. There are many ways of thread making, especially that of tapping which has been employed as an efficient technique for the production of internal threads.Recently, the rise of productivity has been emphasized year by year. Also it is said that the improvement

15、of productivity is one of the most important and serious problem in todays machine shops. The improvement of hole making production (drilling/reaming and tapping) has become a serious matter. One factor limiting productivity gains has been that conventional tool materials such as HSS exhibit very sh

16、ort tool lives when machining an aluminum alloy metal matrix composite (MMC) due to the abrasive nature of the SiC particles. Therefore, the improvement has been obstructed by various problems as rapid tool wear and failure. As a mean of achieving the desired productivity gains, forming taps have ca

17、ught the attention of machine shop engineers.In this study, cutting characteristics of tapping (torque, taps wear, work hardness, etc.) during the tapping of MMC with forming taps, both TiN coated and uncoated was investigated.2. Experimental Methods2.1 Experimental EquipmentThe tapping tests were c

18、onducted on a Cincinati 5NC-MC (5HP). The (drilling and tapping) apparatus and data acquisition system are presented in Figure 2.1. The cutting forces (thrust and torque) were measured using a three component Kistler Type 9273 Piezo-electric dynamometer and the corresponding locus was amplified by a

19、 Kistler type 5007 charge amplifier. The signal obtained was then passed to a Towa A/D converter type AZI-16-12, connected to a personal computer. A schematic diagram of the cutting force measuring setup is presented in Figure 2.2.2.2 Workpiece, Drill and TapThe workpiece used in this experiment is

20、aluminum alloy (2618 MMC) reinforced with 15 vol% silicon carbide (SiC) particulate. The thread forming fluteless taps were M10 as shown in Figure 2.3 and two types of taps were used during the course of the investigation.The shape of the taps was similar to the shape of a screw (M10, Pitch:1.5), ei

21、ther uncoated or coated with Titanium nitride (TiN).Pilot holes of 9.3mm diameter were used for all trials and PCD tipped drills (HSS cemented tungsten carbide and polycrystalline diamond drilling) were employed in all the tests. The shape of drill used in this test is shown in Figure 2.4.2.3 Gauge

22、and Inspection Method of ThreadThe estimate of threads was performed with a thread gauge (Go-NoGo gauge).The results were classified as A and B quality1. Where, 1.4tapped diameter is Diameter is the recommended depth of thread of hard Aluminum alloy2.A quality : Gauge can be turned through the whole

23、 thread.B quality : Gauge can be turned in at least 15mm.Figure 2.5 shows the appearance of gauge (M101.5 ISO 6H).2.4 Experimental CharacteristicsTapping tests were conducted at a cutting speed (rotational speed of tap) of 215 rpm and feed rate of 0.1mm/rev (322.5mm/min). Coolant oil (Chlorine and s

24、ulphur free heat cutting oil) was supplied manually.3. Experimental Results And DiscussionCutting Forces in Tapping (thrust, torque) The thrust and torque signals produced in this tapping operation with a M10 tap are shown in Figure 3.1. The results show that torque increases with number of threads

25、formed and decreases at the instant that the tap is about to break through the outlet of the hole. Whereas, little increase in thrust can be observed.3.1 Comparison of TorqueFigure 3.2 shows torque signals of tap in the 1st hole and 8th holes for the TiN-coated and uncoated taps mentioned in the pre

26、vious section.At the initial stage of the tapping operation both thrust and torque show an increase in magnitude. However, when the thread forming operation enters full gear, the thrust force shows a decreasing trend accompanied with in increase in torque and as the tap retracts after breakthrough,

27、a negative torque of 5N magnitude can be observed across a few threads at hole outlet.The negative thrust value observed in Figure 3.1 is the outcome of the deflection of the tap from the center due to either improper workpiece, tool setup or poor finish of the pilot holes. The inconclusive results

28、observed above led to the investigating of the factors responsible for the poor finish of the pilot holes.The torque signals derived while threading taps for the 1st hole show tapping torque values of 8.7 Nm for the TiN coated tap and11.2 Nm for the uncoated and tap respectively. Thus, for the 1st h

29、ole, the TiN coated tap exhibits a 28% reduction in torque compared to the uncoated tap. While for the 8th hole the reduction in torque for the TiN coated tap is approximately 52% as compared to uncoated tap.Comparison of the torque signals at the initial phase and prior to breakthrough of the taps

30、shows that the uncoated tap exhibits a sharper decrease in torque than the TiN coated tap. It can be said that, in the case of forming taps, work is evenly distributed at the scrape point during threading. A comparison of the torque results is summarized in Figure 3.3. Results indicate that tapping

31、torque of the TiN coated tap is generally lower than those of the un-coated tap.3.2 Comparison of Thread FormsThe thread forms for the TiN coated and uncoated taps are shown in Figure 3.4. Magnified images of the axial cross-section of the formed threads at position No., and in holes and 1.4 and 8 w

32、ere used in the comparison.Figure 3.4 is a model of the photographed threads at the various positions, while Figure 3.5 shows magnified images for hole No.8As it can be seen from Figure 3.5, the thread profile at position No. to of threads formed with the TiN coated tap show no abnormalities. On the contrary, with the uncoatedtaps the root shows irregularities at position No. and corresponding to the hole inlet an

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1