1、届广东省高三第一学期期末质量检测数学理试题解析版2019届广东省高三第一学期期末质量检测数学(理)试题一、单选题1已知集合,则( )A B C D【答案】B【解析】由题意先求出集合N然后根据交集的运算即可求解.【详解】因为= ,所以.故选:B.【点睛】本题考查了交集的定义与运算问题,属于基础题2复数在复平面内对应的点的坐标为( )A B C D【答案】B【解析】由复数代数形式的乘除运算化简即可得答案【详解】,复数在复平面内对应的点的坐标为(2,1)故选:B【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题3若,且为第四象限角,则的值等于( )A B C D【答案
2、】A【解析】由同角三角函数基本关系式可求cos,利用诱导公式化简即可得解【详解】,且为第四象限角,cos,tan()tan故选:A【点睛】本题主要考查了诱导公式和同角三角函数基本关系在化简求值中的应用,属于基础题4已知左、右焦点分别为的双曲线:过点,点在双曲线上,若,则( )A B C D【答案】C【解析】由双曲线经过的点,求出a,再由双曲线的定义求解即可【详解】左、右焦点分别为F1,F2的双曲线C:过点,可得:,解得a3,b1,c,a+c3,点P在双曲线C上,若|PF1|3,可得p在双曲线的左支上,则|PF2|2a+|PF1|6+39故选:C【点睛】本题考查了双曲线的简单性质的应用,考查转化
3、思想以及计算能力,属于基础题.5已知,下列函数中,在其定义域内是单调递增函数且图象关于原点对称的是( )A B C D【答案】C【解析】由奇函数的定义得若函数的图象关于原点对称,则该函数为奇函数,由此依次分析选项中函数的奇偶性与单调性,即可得答案【详解】根据题意,若函数的图象关于原点对称,则该函数为奇函数,依次分析选项:对于A,y为反比例函数,在其定义域上不是增函数,不符合题意;对于B,ytanmx,在其定义域上不是增函数,不符合题意;对于C,yln ,必有0,解可得mxm,则函数的定义域为(m,m),f(x)lnlnf(x),则函数f(x)为奇函数,且在其定义域内是单调递增函数,符合题意;对
4、于D,yxm,当m时,f(x)不是奇函数,不符合题意;故选:C【点睛】本题考查了函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于中档题6若干年前,某教师刚退休的月退休金为元,月退休金各种用途占比统计图如下面的条形图。该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图。已知目前的月就医费比刚退休时少元,则目前该教师的月退休金为( )A元 B元 C元 D元【答案】D【解析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可【详解】设目前该教师的退休金为x元,则由题意得:600015%x10%100解得x8000故选:D【点睛】本题考查由
5、条形图和折线图等基础知识解决实际问题,属于基础题7已知向量与共线且方向相同,则( )A B C D【答案】C【解析】由两向量共线且方向相同,求出t的值,再计算的值【详解】向量与共线,t240,解得t2;又与方向相同,t2,(2,1),(4,2),(14,7),142+72245,又2(0,0),0,245故选:C【点睛】本题考查了平面向量的共线和坐标运算等问题,是基础题8拿破仑为人好学,是法兰西科学院院士,他对数学方面很感兴趣,在行军打仗的空闲时间,经常研究平面几何。他提出了著名的拿破仑定理:以三角形各边为边分别向外(内)侧作等边三角形,则它们的中心构成一个等边三角形。如图所示,以等边的三条边
6、为边,向外作个正三角形,取它们的中心,顺次连接,得到,图中阴影部分为与的公共部分。若往中投掷一点,则该点落在阴影部分内的概率为( )A B C D【答案】A【解析】设等边GEI的边长为3a,则DFH的边长为6a,M,N分别为EI与AB,AC的交点,等边AMN的边长为a,分别求出阴影部分的面积与DFH的面积,由概率比是面积比得答案【详解】设等边GEI的边长为3a,则DFH的边长为6a,等边AMN的边长为a,则 ,阴影部分的面积S阴影SEGI3SAMN 由概率比为面积比可得:往DFH中投掷一点,则该点落在阴影部分内的概率为P 故选:A【点睛】本题考查了几何概型,关键是求阴影部分的面积,属于中档题9
7、已知函数的最大值为,周期为,将函数的图象向左平移个单位长度得到的图象,若是偶函数,则的解析式为( )A BC D【答案】B【解析】由两角差的余弦公式化简函数的解析式,再由余弦函数的周期性求得,由函数yAcos(x+)的图象变换规律,三角函数的奇偶性求得,可得函数的解析式【详解】函数f(x)Acosxcos+AsinxsinAcos(x) 的最大值为2,A2;函数的周期为,2,f(x)2cos(2x)将函数f(x)的图象向左平移 个单位长度得到g(x)2cos(2x+)的图象,若g(x)是偶函数,则k,kZ,则f(x)的解析式为f(x)2cos(2x),故选:B【点睛】本题考查了两角差的余弦公式
8、,余弦函数的周期性,函数yAcos(x+)的图象变换规律,三角函数的奇偶性,属于中档题10如图所示为某三棱锥的三视图,则该三棱锥外接球的表面积为( )A B C D【答案】B【解析】由三视图可得,该几何体的外接球,相当于一个棱长为2,3,4的长方体的外接球,进而可得答案【详解】由已知中的三视图可得,该几何体的外接球,相当于一个棱长为1,1,2的长方体的外接球,故外接球直径2R,故该三棱锥的外接球的表面积S4R224.故选:B【点睛】本题考查了由三视图求球的体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,属于中档题.11在凸平面四边形中,且,则的面积等于( )A B C D【答案】
9、D【解析】在凸平面四边形中,由,得 ,所以 ,得BD=7,由余弦定理得 ,再由三角形面积公式计算即可.【详解】在凸平面四边形中,得,在中, ,在中,.由,得BD=7. 再由,得sin= , .故选:D.【点睛】本题考查了凸平面四边形的性质和正余弦定理的应用,也考查了三角形的面积公式,属于中档题.12已知函数在上存在导函数,若,且时,则不等式的解集为( )A B C D【答案】C【解析】先构造函数令g(x)f(x)x3,由题意判断出F(x)的奇偶性和单调性,将不等式转化成g(2x)g(x1),由函数单调性可得到|2x|x1|,解得即可【详解】令g(x)f(x)x3,f(x)f(x)2x3,f(x
10、)x3f(x)(x)3即g(x)g(x),g(x)为偶函数x0时f(x)3x20,g(x)在0,+)递增,不等式f(2x)f(x1)7x3+3x23x+1的解集g(2x)g(x1)|2x|x1|3x2+2x10 或x1故选:C【点睛】本题考查了构造新函数的应用,考查新函数单调性、奇偶性,导数的综合应用,属于中档题二、填空题13二项式展开式中的常数项为_。(用数字作答)【答案】240【解析】由 ,令123r0,得r4,由此能求出常数项【详解】在二项式中,通项公式得,由123r0,得r4,常数项为.故答案为:240【点睛】本题考查了二项展开式中常数项的求法,注意二项式定理的合理运用,是基础题,14
11、已知实数满足,则的最小值为_。【答案】【解析】由题意作出其平面区域,z(x1)2+(y5)2可看成阴影内的点P到点D(1,5)的距离的平方,求阴影内的点P到点D(1,5)的距离的平方最小值即可【详解】由题意作出实数x,y满足平面区域,z(x1)2+(y5)2可看成阴影内的点P到点D(1,5)的距离的平方,阴影内的点P到点D(1,5)的距离的平方最小值转化为:D到xy+10的距离的平方,解得 .故答案为: 【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题15已知正方体的棱长为,交于,是棱的中点,则直线被正方体外接球所截得的线段长度为_。【答案】【解析】先求
12、出正方体外接球的半径,再求出球心到OE的距离,利用勾股定理即可求解【详解】正方体内接于球,2R,R,设正方体ABCDA1B1C1D1的中心为G,sinGOEsinAA1C ,G到OE的距离dOGsinGOE1 则直线OE被正方体外接球所截得的线段长度为2 故答案为: 【点睛】本题考查多面体的外接球,考查空间想象能力与思维能力,考查直线与截面圆位置关系的应用,属于中档题16已知抛物线:经过点,直线分别与抛物线交于点,若直线的斜率之和为零,则直线的斜率为_。【答案】-2【解析】将P(1,4)代入y22px可解得p8,得抛物线方程为y216x,在设出直线PA的方程并与抛物线方程联立解得A的坐标,同理
13、解得B的坐标,最后用斜率公式可求得AB的斜率为定值2【详解】因为抛物线C:y22px经过点P(1,4),p8,抛物线C:y216x,设直线PA:y4k(x1),并代入y216x消去x并整理得k2x2+(8k2k216)xx+(4k)20,设A(x1,y1),B(x2,y2)依题意知1和x1是以上一元二次方程的两个根,1x1,x1 ,y14k+kx14k+k4,同理得x2,y24,所以直线AB的斜率为:故答案为:2【点睛】本题考查了求直线斜率的定值问题,直线与抛物线的位置关系的综合,属于中档题三、解答题17已知数列是递增的等差数列,且是与的等比中项。(1)求;(2)若,求数列的前项和。【答案】(
14、1); (2).【解析】(1)数列an是递增的等差数列,设公差为d,d0,等差数列的通项公式和等比数列的中项性质,解方程可得首项和公差,即可得到所求通项公式;(2)求得,由数列的裂项相消求和,化简整理即可.【详解】(1)设的公差为d,且,据题意则有,即因为,解得所以.(2)(),前n项和Tn(+)()【点睛】本题考查等差数列的通项公式和等比数列的中项性质,考查数列的求和方法:裂项相消求和,考查化简运算能力,属于中档题18水果的价格会受到需求量和天气的影响.某采购员定期向某批发商购进某种水果,每箱水果的价格会在当日市场价的基础上进行优惠,购买量越大优惠幅度越大,采购员通过对以往的10组数据进行研究,发现可采用来作为价格的优惠部分(单位:元
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1