1、专升本高数复习资料第一章极限和连续第一节极限复习考试要求1.了解极限的概念(对极限定义 等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。2.了解极限的有关性质,掌握极限的四则运算法则。3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。4.熟练掌握用两个重要极限求极限的方法。第二节函数的连续性复习考试要求1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数(含分段函数)在一点处连续性的方法。2会求函
2、数的间断点。3掌握在闭区间上连续函数的性质会用它们证明一些简单命题。4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。第二章一元函数微分学第一节导数与微分复习考试要求1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。2会求曲线上一点处的切线方程与法线方程。3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。4.掌握隐函数的求导法与对数求导法。会求分段函数的导数。5.了解高阶导数的概念。会求简单函数的高阶导数。6.理解微分的概念,掌握微分法则,了解可微和可导的关系,会求函数的一阶微分。第二节导数的应用复习考试要求 D .1.熟练掌握
3、用洛必达法则求 f 2 “ 0 型未定式的极限的方法。2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法。会利用函数的单调性证明简单的不等式。3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题。4.会判断曲线的凹凸性,会求曲线的拐点。5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分复习考试要求1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质。2.熟练掌握不定积分的基本公式。3.熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)。4.熟练掌握不定积分的分部积分法。5掌握简单有理函数不定
4、积分的计算。第二节定积分及其应用复习考试要求1.理解定积分的概念及其几何意义,了解函数可积的条件2掌握定积分的基本性质3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。4.熟练掌握牛顿一莱布尼茨公式。5掌握定积分的换元积分法与分部积分法。6.理解无穷区间的广义积分的概念,掌握其计算方法。7掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。第四章多元函数微分学复习考试要求1.了解多元函数的概念,会求二元函数的定义域。了解二元函数的几何意义。2.了解二元函数的极限与连续的概念。3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求
5、法。掌握二元函数的二阶偏导数的求 法,掌握二元函数的全微分的求法。4.掌握复合函数与隐函数的一阶偏导数的求法。5会求二元函数的无条件极值和条件极值。6.会用二元函数的无条件极值及条件极值解简单的实际问题。第五章概率论初步复习考试要求1.了解随机现象、随机试验的基本特点;理解基本事件、样本空间、随机事件的概念。2掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系。3.理解事件之间并(和)、交(积)、差运算的意义,掌握其运算规律。4.理解概率的古典型意义,掌握事件概率的基本性质及事件概率的计算。5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性。6.了解随机变量的概念及其分布函数
6、。7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法。8.会求离散性随机变量的数学期望、方差和标准差。第一章极限和连续第一节极限复习考试要求1.了解极限的概念(对极限定义 等形式的描述不作要求)。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。2.了解极限的有关性质,掌握极限的四则运算法则。3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会进行无穷小量阶的比较 (高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。4.熟练掌握用两个重要极限求极限的方法。主要知识内容(一)数列的极限1.数列定义按一定顺序排列的无穷多个数业
7、上严心严I称为无穷数列,简称数列,记作 Xn,数列中每一个数称为数列的项,第 n项xn为数列的一般项或通项,例如(1)1 , 3 , 5,(2n-1 ),(等差数列)(2)詁卜谆(等比数列)1 3 1 0(3) 了打(递增数列)(4)1 , 0,1 ,。,(震荡数列)都是数列。它们的一般项分别为I 科 I # (- 1)(2n-1 ),亍詬,2。对于每一个正整数 n ,都有一个xn与之对应,所以说数列xn可看作自变量n的函数xn=f (n),它的定义域是全体正整数,当自变量 n依次取1,2,3一切正整数时,对应的函数值就排列成数列。在几何上,数列xn可看作数轴上的一个动点,它依次取数轴上的点
8、X1,X2,X3,.Xn,。2.数列的极限定义对于数列xn,如果当nis时,xn无限地趋于一个确定的常数 A,则称当n趋于无穷大时,数列xn以常数A为极限,或称数列收敛于 A,记作I;吓汇忠“炖川讨比如:+ ”无限的趋向0鳥存士无限的趋向1否则,对于数列Xn,如果当nis时,Xn不是无限地趋于一个确定的常数,称数列 Xn没有极限,如果数列没有极限,就称数列是发散的。比如:1 , 3, 5,(2n-1 ),* (_)T1,0, 1, 0,数列极限的几何意义:将常数 A及数列的项 依次用数轴上的点表示,若数列 Xn以A为极限,就表示当 n趋于无穷大时,点 Xn可以无限靠近点 A,即点Xn与点A之间
9、的距离|Xn-A|趋于0。比如:卜卅* ”无限的趋向0寫存Hr无限的趋向1(二)数列极限的性质与运算法则1.数列极限的性质定理1.1 (惟一性)若数列Xn收敛,则其极限值必定惟一。定理1.2 (有界性)若数列Xn收敛,则它必定有界。注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。比如:1 , 0, 1 , 0,有界:0, 12.数列极限的存在准则定理1.3 (两面夹准则)若数列Xn,yn,Zn满足以下条件:定理1.4若数列Xn单调有界,则它必有极限。3.数列极限的四则运算定理 。定理1.5(1)乜:.牡忙:;(2)-卜二 - ;-&出人A j m (3)当賤时,(三)函数极限的概念1
10、.当XT X0时函数f ( X)的极限(1 )当XT X0时f (x)的极限定义对于函数 y=f (X),如果当X无限地趋于X0时,函数(x)的极限是A,记作或 f (x) t A (当 xtxo 时)无限地趋于一个常数 A,则称当x t X0 时,函数f例 y=f ( x) =2x+1a聊12 SZ. 5B2.9? 3Xt 1,f ( X )x1X t 1(2)左极限当XT X0时f ( X)的左极限 定义对于函数y=f (x),如果当 时,函数f (x)的左极限是A,或 f (X0-0 ) =A(3)右极限当XT X0时,f ( x)的右极限 定义对于函数y=f (x),如果当 时,函数f
11、 (x)的右极限是A,选恥宀或f (X0+0 ) =A例子:分段函数D尹】sM),求酣曲,齬開解:当x从0的左边无限地趋于 有X从X0的左边无限地趋于 记作X从X0的右边无限地趋于 记作X0时,X0时,0时f ( X)无限地趋于一个常数函数函数f (X)无限地趋于一个常数f (X)无限地趋于一个常数我们称当X t0时,f ( X)A,则称当A,则称当的左极限是址牛 - (S * 12 I当x从0的右边无限地趋于 0时,f (x)无限地趋于一个常数-1。我们称当XT0时,f (X)的右极限是-1 ,XT X0XT X01,即即有显然,函数的左极限右极限 与函数的极限 之间有以下关系:定理1.6当
12、xtxo时,函数f (x)的极限等于 A的必要充分条件是x工1x T 1f(x) T 2对于函数 宀-,当XT 1时,f (x)的左极限是2,右极限也是 2。JLl2.当XT8时,函数f (x)的极限(1 )当XT8时,函数f ( x)的极限 y=f(x)x Tm f(x) T ?Hy=f(x)=1 +x Tm f(x)=1+ ;t 1U r& (3 4 -1) 定义对于函数y=f (x),如果当xTm时,f (X)无限地趋于一个常数 A,则称当XTm时,函数f (X)的极限是A, 记作區fg 或 f ( X)T A (当 xTm时)(2 )当XT + m时,函数f ( x)的极限定义对于函数
13、y=f ( X),如果当XT + m时,f ( X)无限地趋于一个常数 A,则称当XT + m时,函数f ( x )的极限是A,记作 N制这个定义与数列极限的定义基本上一样,数列极限的定义中 nT+m的n是正整数;而在这个定义中,则要明确写出XT + m,且其中的X不一定是正整数,而为任意实数。y=f(x)x T + mf(x)x T?丄X T + m, f(x)=2+ T 2idj-*K例:函数 f (x) =2+e -x,当 xt + m时,f (x)t?i解:f (x) =2+e -x=2+ J,1Xt + m, f ( x) =2+T2所以(3 )当XT - m时,函数f ( x )的
14、极限定义对于函数 y=f (x),如果当xt- g时,f (x)无限地趋于一个常数 A,则称当XT -g时,f (x)的极限是 A, 记作xT- gf(x) T?则 f(x)=2+ (x v 0) x T - g,-x T + gIf(x)=2+ 応 t 2 碍怙T 例:函数加小丹E,当x T - g时,f ( x)T? 解:当 x T - g时,-x T + g 3川Tt 2,即有由上述x Tg, x T + g, XT - g时,函数f ( x)极限的定义,不难看出: x Tg时f (x)的极限是 A充分必要条件是当xt + g以及xt-g时,函数f (x)有相同的极限 A。例如函数 ,当
15、XT - g时,f ( X)无限地趋于常数 1,当xT + g时,f (x)也无限地趋于同一个常数 1,因此称当xTg时卜:1:的极限是1,记作Lira 1亠I其几何意义如图3所示。-nITTf(x)=1+ ?y=arcta nx:加.处不存在。但是对函数y=arctanx 来讲,因为有即虽然当x T - g时,f ( x )的极限存在,当x T + g时,f ( x)的极限也存在,但这两个极限不相同,我们只能说,当xTg时,y=arctanx 的极限不存在。x)=1+ ;y=arcta nx但是对函数y=arctanx 来讲,因为有即虽然当x f 8时,f (x)的极限存在,当xT + 8时
16、,f (X)的极限也存在,但这两个极限不相同,我们只能说, 当xf8时,y=arctanx 的极限不存在。(四)函数极限的定理定理1.7 (惟一性定理)如果 存在,则极限值必定惟一。定理1.8 (两面夹定理)设函数 :在点叵的某个邻域内( 可除外)满足条件:(1)工胡巩(2)懊的”旣呵t则有昏。注意:上述定理1.7及定理1.8对也成立。F面我们给出函数极限的四则运算定理1.9如果題爪嗨血T则陽 1/00士釈唧1油 /fr)SialimU11)船聊 (lis /() (Ha g 叮 AB上述运算法则可推广到有限多个函数的代数和及乘积的情形,有以下推论:(2)(3)用极限的运算法则求极限时,必须注
17、意:这些法则要求每个参与运算的函数的极限存在,且求商的极限时,还要求 分母的极限不能为零。另外,上述极限的运算法则对于 、的情形也都成立。(五)无穷小量和无穷大量1.无穷小量(简称无穷小)定义对于函数 ,如果自变量x在某个变化过程中,函数 的极限为零,则称在该变化过程中,叩为无穷小量,一般记作丨-八常用希腊字母 ,来表示无穷小量。定理1.10函数以A为极限的必要充分条件是:If 可表示为A与一个无穷小量之和。注意:(1 )无穷小量是变量,它不是表示量的大小,而是表示变量的变化趋势无限趋于为零。(2) 要把无穷小量与很小的数严格区分开,一个很小的数,无论它多么小也不是无穷小量。(3) 一个变量是
18、否为无穷小量是与自变量的变化趋势紧密相关的。在不同的变化过程中,同一个变量可以有不同的变化趋势,因此结论也不尽相同。例如:t.亠., OBX1|-,:心振荡型发散 附归(4) 越变越小的变量也不一定是无穷小量,例如当 x越变越大时,二就越变越小,但它不是无穷小量。(5 )无穷小量不是一个常数,但数“ 0”是无穷小量中惟一的一个数,这是因为 。2.无穷大量(简称无穷大)定义;如果当自变量卜7临(或8)时, 的绝对值可以变得充分大(也即无限地增大),则称在该变化过程中,为无穷大量。记作卜注意:无穷大(8)不是一个数值,“8”是一个记号,绝不能写成 或:。3.无穷小量与无穷大量的关系无穷小量与无穷大
19、量之间有一种简单的关系,见以下的定理。定理1.11在同一变化过程中,如果I畑为无穷大量,则 用 为无穷小量;反之,如果 沟1为无穷小量,且 U诃,则用 为无穷大量。当小古无穷大如Jr无穷小当:处;w.厂为无穷小沽无穷大4.无穷小量的基本性质性质1有限个无穷小量的代数和仍是无穷小量;性质2有界函数(变量)与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量。krik 盂皿 一 =J II Qjp f DOsix G性质3有限个无穷小量的乘积是无穷小量。性质4无穷小量除以极限不为零的变量所得的商是无穷小量。5.无穷小量的比较定义设 是同一变化过程中的无穷小量,即 这个性质常常使用在极
20、限运算中,它能起到简化运算的作用。但是必须注意:等价无穷小量代换可以在极限的乘除 运算中使用。常用的等价无穷小量代换有:当卜八时,sinx x;tan x;arctanx x;arcsinx x;I-cor f1- f M * r-1jr,T + it -1 -:(六)两个重要极限1.重要极限I重要极限I是指下面的求极限公式* js . r -心 Q j型的极限问题。 n; = fXT。bn = = 1-aC ar -1-4 tin f这个公式很重要,应用它可以计算三角函数的其结构式为:试匕獻不.lin-1)x-12.重要极限n重要极限n是指下面的公式:He(L * -;* =rJII im
21、(L * ? rliiofl+tjt - J其中e是个常数(银行家常数),叫自然对数的底,它的值为这两个重要极限在极限计算中起很重要重要极限I是属于 型的未定型式,重要极限n是属于“广”型的未定式时, 的作用,熟练掌握它们是非常必要的。(七)求极限的方法:1.利用极限的四则运算法则求极限;2.利用两个重要极限求极限;3.利用无穷小量的性质求极限;4.利用函数的连续性求极限;5.利用洛必达法则求未定式的极限;6.利用等价无穷小代换定理求极限。基本极限公式C L Lizn c =d(2)(3)(4)IlDt 丄 BK-TW-SI is衍丿+呼円+郭十叫;| 3*|讥彳如坷 卄斗例1.无穷小量的有关
22、概念(1) 9601下列变量在给定变化过程中为无穷小量的是 b.羔 “JC.昨”皿td.宀孑“答C 心叫吒发散L -E = r旷二严-*0I1 1t f n-*,. f -kp,4 t s 啊| r-3 _ x-S _ 1 y 加 1D.L 而(2)0202当 时,飞z与x比较是A.高阶的无穷小量 B.等价的无穷小量C.非等价的同阶无穷小量 D.低阶的无穷小量答B解:当|.巩 与x是lie Jm -Jbi(l+2 D I r-0 Kl_ 丄u 如(14書=1血肋 a + iJJT r-tft极限的运算:jr* + 3ar-l0611解:f s - a Zun -j -.r- tjx-l hri
23、 L 计牛0-1IISi = Q ir1 lim (i + l)D答案-1ol例2.型因式分解约分求极限5|(1)0208吕宀1 答卩解:liq 七r . fan 空珈詡-Hm -I i-J 点-4 10+劄土-对 wIjt+2 -q(2)0621计算 答Inti 解:例3.型有理化约分求极限对|(1)0316计算答 =LUTl. m w T-2 +/2)三 bm *- biB K-r2W4/(2) 9516出亦答JR我=ig 1 扌* I - J严斗”+ 电 wj,1 、 -7 bm I10 lea V 斗十才讪4 j g 3+ hra 3寓 ZMH Z例5.用重要极限I求极限iJri!tl
24、 li 诚3-】审1 JEKI(1) 9603下列极限中,成立的是jj. t LA. 工 B.C.鳴?- D.忸(2) 0006 R F ! 丁 IJ jj + 5j-6答B?!(-1) _ sintc-D , Emtx!)解:- - -t-L 皐一 1 r-i I jl + 6例6.用重要极限n求极限liti (I*-1 *. LlW(I + 1 rag 14g q+=(r?Tr(专茧 帆町 黑曲理(1)0416计算 答解析解一:令1|5!|1+11? f =/itl山一 匝式-LinKI卜字】所1解牟 : L-*H X J -MC- thnflHl三卢严-* J51 制 Cl-二i=*J0
25、306十2 cac 4 r bsnt1+ s)- -r20601 3、 .lai,(2) 0118计算八答严噱u.HiX Lim 3_ 酉产 解:例7.用函数的连续性求极限0407哼:U 答0解:凹川川例8.用等价无穷小代换定理求极限 ! 1 - cw 0317忸右7 答0(1)0307设5町5 站则在=的左极限 答1解析肿的 Im /O)w lis他讣1,-MJT rJ l.O 4 = I in Jf in 1b 01 + i)0jctQ 斗 mD*H+l 疋0答1(2)0406设 b z,则岀m 1解析严呵石亦%】k lim /ifx) = litn is 1. r=/0+Q = ufcl
26、O例10.求极限的反问题(1)已知吧卡一“则常数:=解析解法一: ,即,得解法三:(洛必达法则)(2 )若j时D 求a,b的值.d解析卩型未定式 当Tl时,册八-,-1.令l-/ : -JL - :-.| 附E 十亠 R0402imf-Ly=80017 7亠丿,贝U k= .(答:In2)解析5t = Jn Il 2 - Bia 2A- In 2前面我们讲的内容:极限的概念;极限的性质;极限的运算法则;两个重要极限;无穷小量、无穷大量的概念;无穷小量的性质以及无 穷小量阶的比较。第二节函数的连续性复习考试要求1.理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在之间的关系,掌握判
27、断函数(含分段函 数)在一点处连续性的方法。2会求函数的间断点。3掌握在闭区间上连续函数的性质会用它们证明一些简单命题。4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限。主要知识内容(1)函数连续的概念1函数在点xo处连续定义1设函数y=f ( x)在点xo的某个邻域内有定义,如果当自变量的改变量 x (初值为xo)趋近于0时,相应的函数的改变量 y也趋近于0,即或迥+ 人轻则称函数y=f ( x)在点xo处连续。函数y=f (x)在点xo连续也可作如下定义:定义2设函数y=f (x)在点xo的某个邻域内有定义,如果当 xtxo时,函数y=f (x)的极限值存在,且等于 xo处的函数值f (xo),即空兀卄仪,I定义3设函数y=f (x),如果莎,则称函数f ( x)在点xo处左连续;如果宀厂;心,则称函数f (x)在点 xo处右连续。由上述定义 2可知如果函数y=f ( x)在点xo处连续,则f ( x)在点xo处左连续也右连续。2函数在区间a, b上
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1