ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:139.05KB ,
资源ID:6059368      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/6059368.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(DMC仿真算例.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

DMC仿真算例.docx

1、DMC仿真算例基于matlab的预测控制(DMC)仿真1、实验目的:通过对动态矩阵控制的MATLAB仿真,发现其对直接处理带有纯滞后、大惯性的对象,有良好的跟踪性和有较强的鲁棒性,输入已知的控制模型,通过对参数的选择,来取得良好的控制效果。2、实验原理:预测控制算法是一种基于被控对象非参数数学模型的控制算法,它是一种基于对象阶跃响应的预测控制算法,它以对象的阶跃响应离散系数为模型,避免了通常的传递函数或状态空间方程模型参数的辨识,又因为采用多步预估技术,能有效解决时延过程问题,并按预估输出与给定值偏差最小的二次性能指标实施控制,它适用于渐进稳定的线性对象,系统的动态特性中具有纯滞后或非最小相位

2、特性都不影响改算法的直接应用,因此是一种最优控制技术。3、实验环境: 计算机,matlab4、实验步骤 预测控制算法充分利用了反映被控对象动态行为的有用信息,对被控对象时滞和阶次变化的鲁棒性都有所提高,从而得到好的控制性能。但是由于预测控制采用模型预测的方式,其参数的选择对性能有重要的影响。合理的选择控制参数非常重要,它直接影响着系统整体的控制效果。对DMC来说,影响其性能的主要参数有以下几个。 1)采样周期T与模型长度N 在DMC中采样周期T和模型长度N的选择需要满足香农定理和被控对象的类型及其动态特性的要求。为使模型参数尽可能完整的包含被控对象的动态特征,通常要求NT后的阶跃响应输出值已经

3、接近稳定值。因此,T减小就会导致N增大,若T取得过小,N变大,会增加计算量。而适当的选取采样周期,使模型长度控制在一定的范围内,避免因为采样周期减少而使模型长度增加使计算量增加,降低系统控制的实时性。所以,从计算机内存和实时计算的需要出发,应选取合适的采样周期和模型长度。 2)预测时域长度P 预测时域长度P对系统的稳定性和快速性具有重要的影响。为使滚动优化真正有意义,应使预测时域长度包括对象的主要动态部分。若预测时域长度P小,虽控制系统的快速性好,但稳定性和鲁棒性会变差;若预测时域长度P很大,虽明显改善系统的动态性能,即控制系统的稳定性和鲁棒性变好,但系统响应过于缓慢,增加计算时间,降低系统的

4、实时性。 3)控制时域长度M控制时域长度M在优化性能指标中表示所要确定的未来控制量的改变数目,即优化变量的个数。在预测时域长度P已知的情况下,控制时域长度M越小,越难保证输出在各采样点紧密跟踪期望输出值,系统的响应速度比较慢,但容易得到稳定的控制和较好的鲁棒性;控制时域长度M越大,控制的机动性越强,能够改善系统的动态响应,增大了系统的灵活胜和快速性,提高控制的灵敏度,但是系统的稳定性和鲁棒性会变差。因此,控制时域长度的选择应兼顾快速性和稳定性。5、实验控制算法实例仿真 被控对象模型为 分别用MAC和DMC算法进行仿真。无论是MAC还是DMC算法,它们都适用于渐进稳定的线性对象,先对该对象进行M

5、AC算法仿真,MAC预测模型为, j=1, 2, 3,P.。写成矩阵形式为,即预测误差为,参考轨迹。流程图如下1.算法实现由于DMC算法是一种基于模型的控制,并且运用了在线优化的原理,与PID算法相比,显然需要更多的离线准备工作(1)测试对象的阶跃响应要经过处理及模型验证后得到的模型系数a1,aN。在这里,应该强调模型动态响应必须是光滑的,测量噪声和干扰必须滤除(2)利用仿真程序确定优化策略,计算出控制系数d1dp。(3)选择校正系数h1hN。这三组动态系数确定后,应置入固定内存单元,以便实时调用。2.参数选择当DMC算法在线实施时,只涉及模型参数ai,控制参数di和校正参数hi。但其中除了h

6、i可以由设计者自由选择外,ai取决于对象阶跃响应特性及采样周期的选择,di取决于ai及优化性能指标,他们都是设计的结果而非直接可调参数。在设计中,真正要确定的参数应该是(1)采样周期T(2)滚动优化参数的初值,包括预测时域长度P,控制时域长度M,误差权矩阵Q和控制权矩阵R(3)误差校正参数hi。3.用DMC算子进行仿真,得出结合matlab中simulink框图和程序对对象进行仿真,得出的结果如下图所示,结论:图中曲线为使用DMC控制后系统的阶跃响应曲线。从图中可看出:采用DMC控制后系统的调整时间小,响应的快速性好,而且系统的响应无超调。该结果是可以接受的。优化时域P表示我们对k时刻起未来多

7、少步的输出逼近期望值感兴趣。控制时域M表示所要确定的未来控制量的改变数目。模型算法控制(MAC)方案设计图模型算法控制(MAC)由称模型预测启发控制(MPHC),与MAC相同也适用于渐进稳定的线性对象,但其设计前提不是对象的阶跃响应而是其脉冲响应。它的原理结构图如下图所示:图 模型算法控制原理结构图附录clcclearNum1=0.2713;den=1 0.9;numm=0.2713;denm=1 1; %定义对象及模型的传递函数n=40;t1=0:0.1:n/10;g=1*impulse(Num1,den,t1);gm=1*impulse(numm,denm,t1); for i=1:n g

8、(i)=g(i+1);endfor i=1:n gm(i)=gm(i+1);enda=g;am=gm; N=40;p=15;M=1;m=M;G=zeros(p,m);for i=1:p for j=1:m if i=j G(i,j)=g(1); else if ij G(i,j)=g(1+i-j); else G(i,j)=0; end end end if im s=0; for k=1:(i-m+1) s=s+g(k); G(i,m)=s; end endendF=zeros(p,n-1);for i=1:p k=1; for j=(n-1):-1:1 if i=j F(i,j)=g(n)

9、; else if ij F(i,j)=0; else F(i,j)=g(i+k); end end k=k+1; end end R=1.0*eye(m); Q=0.9*eye(p); H=0.3*ones(p,1); %定义各系数矩阵e=zeros(4*N,4);y=e;ym=y;U=zeros(4*N,4);w=1; Yr=zeros(4*N,4); b=0.1;0.4;0.6;0.9; for i=1:4 for k=N+1:4*Ny(k,i)=a(1:N)*U(k-1:-1:k-N,i); %求解对象输出ym(k,i)=am(1:N)*U(k-1:-1:k-N,i); %求解模型输出

10、e(k)=y(k)-ym(k);for j=1:p Yr(k+j,i)=b(i)(j)*y(k)+(1-b(i)(j)*w;end dt=1 zeros(1,m-1)*inv(G*Q*G+R)*G*Q;U(k,i)=dt*(Yr(k+1:k+p,i)-F*U(k-N+1:k-1,i)-H*e(k);endendt=0:0.1:11.9;subplot(2,1,1); plot(t,y(N:N+119,1)hold on;plot(t,y(N:N+119,2)hold onplot(t,y(N:N+119,3)hold on;plot(t,y(N:N+119,4) %t,y(N:N+119,3)

11、,t,y(N:N+119,4),t,Yr(N:N+119,1),t,w*ones(1,120);%grid on%legend(输出1,输出2,输出3,输出4,柔化曲线,期望曲线); %title(Plot of MAC);%plot(U);%grid on; % DMC.m 动态矩阵控制(DMC)Num1=0.2713;den=1 -0.8351 0 0 0 0;G=tf(Num1,den,Ts.0.4); %连续系统Ts=0.4; %采样时间 TsG=c2d(G,Ts); %被控对象离散化Num1,den,=tfdata(G,v); N=60; %建模时域 Na=step(G,1*Ts:T

12、s:N*Ts); %计算模型向量 aM=2; %控制时域P=15; %优化时域for j=1:M for i=1:P-j+1 A(i+j-1,j)=a(i,1); endend %动态矩阵 A Q=1*eye(P); %误差权矩阵 QR=1*eye(M); %控制权矩阵 RC=1,zeros(1,M-1); %取首元素向量 C 1*ME=1,zeros(1,N-1); %取首元素向量 E 1*Nd=C*(A*Q*A+R)(-1)*A*Q; %控制向量 d=d1 d2 .dph=1*ones(1,N); %校正向量 h(N维列向量)I=eye(P,P),zeros(P,N-P); %Yp0=I*

13、YNoS=zeros(N-1,1) eye(N-1);zeros(1,N-1),1; %N*N移位阵 S sim(DMCsimulink) %运行siumlink文件 subplot(2,1,1); %图形显示plot(y,LineWidth,2);hold on;plot(w,:r,LineWidth,2);xlabel(fontsize15k);ylabel(fontsize15y,w);legend(输出值,设定值)grid on;subplot(2,1,2);plot(u,g,LineWidth,2);xlabel(fontsize15k);ylabel(fontsize15u);gr

14、id on;附2 DMC程序代码%DMC控制算法% DMC.m 动态矩阵控制(DMC)num=0.2713;den=1 -0.8351 0 0 0 0;G=tf(num,den,Ts.0.4); %连续系统Ts=0.4; %采样时间 TsG=c2d(G,Ts); %被控对象离散化num,den,=tfdata(G,v); N=60; %建模时域 Na=step(G,1*Ts:Ts:N*Ts); %计算模型向量 aM=2; %控制时域P=15; %优化时域for j=1:M for i=1:P-j+1 A(i+j-1,j)=a(i,1); endend %动态矩阵 A Q=1*eye(P); %

15、误差权矩阵 QR=1*eye(M); %控制权矩阵 RC=1,zeros(1,M-1); %取首元素向量 C 1*ME=1,zeros(1,N-1); %取首元素向量 E 1*Nd=C*(A*Q*A+R)(-1)*A*Q; %控制向量 d=d1 d2 .dph=1*ones(1,N); %校正向量 h(N维列向量)I=eye(P,P),zeros(P,N-P); %Yp0=I*YNoS=zeros(N-1,1) eye(N-1);zeros(1,N-1),1; %N*N移位阵 S sim(DMCsimulink) %运行siumlink文件 subplot(2,1,1); %图形显示plot(y,LineWidth,2);hold on;plot(w,:r,LineWidth,2);xlabel(fontsize15k);ylabel(fontsize15y,w);legend(输出值,设定值)grid on;subplot(2,1,2);plot(u,g,LineWidth,2);xlabel(fontsize15k);ylabel(fontsize15u);grid on;

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1