ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:21.44KB ,
资源ID:5988171      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5988171.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(MATLAB画图.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

MATLAB画图.docx

1、MATLAB画图用MATLAB绘制各种图形MATLAB绘图1 二维数据曲线图2 其他二维图形3 隐函数绘图4 三维图形5 图形修饰处理6 图像处理与动画制作1.1 二维数据曲线图1.1.1 绘制单根二维曲线plot函数的基本调用格式为:plot(x,y)其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。 例1-1 在0x2p区间内,绘制曲线 y=2e-0.5xcos(4x)程序如下:x=0:pi/100:2*pi;y=2*exp(-0.5*x).*cos(4*pi*x);plot(x,y) 例1-2 绘制曲线。程序如下:t=0:0.1:2*pi;x=t.*sin(3*t);y=t.*

2、sin(t).*sin(t);plot(x,y);plot函数最简单的调用格式是只包含一个输入参数:plot(x)在这种情况下,当x是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 1.1.2 绘制多根二维曲线1plot函数的输入参数是矩阵形式(1) 当x是向量,y是有一维与x同维的矩阵时,则绘制出多根不同颜色的曲线。曲线条数等于y矩阵的另一维数,x被作为这些曲线共同的横坐标。(2) 当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。 (3) 对只包含一个输入参数的plot函数,当输入参数是实矩阵时,则按列

3、绘制每列元素值相对其下标的曲线,曲线条数等于输入参数矩阵的列数。当输入参数是复数矩阵时,则按列分别以元素实部和虚部为横、纵坐标绘制多条曲线。 2含多个输入参数的plot函数调用格式为:plot(x1,y1,x2,y2,xn,yn)(1) 当输入参数都为向量时,x1和y1,x2和y2,xn和yn分别组成一组向量对,每一组向量对的长度可以不同。每一向量对可以绘制出一条曲线,这样可以在同一坐标内绘制出多条曲线。 (2) 当输入参数有矩阵形式时,配对的x,y按对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。 例1-3 分析下列程序绘制的曲线。x1=linspace(0,2*pi,100);

4、x2=linspace(0,3*pi,100);x3=linspace(0,4*pi,100);y1=sin(x1);y2=1+sin(x2);y3=2+sin(x3);x=x1;x2;x3;y=y1;y2;y3;plot(x,y,x1,y1-1) 3具有两个纵坐标标度的图形在MATLAB中,如果需要绘制出具有不同纵坐标标度的两个图形,可以使用plotyy绘图函数。调用格式为:plotyy(x1,y1,x2,y2)其中x1,y1对应一条曲线,x2,y2对应另一条曲线。横坐标的标度相同,纵坐标有两个,左纵坐标用于x1,y1数据对,右纵坐标用于x2,y2数据对。 例1-4 用不同标度在同一坐标内绘

5、制曲线y1=0.2e-0.5xcos(4x) 和y2=2e-0.5xcos(x)。程序如下:x=0:pi/100:2*pi;y1=0.2*exp(-0.5*x).*cos(4*pi*x);y2=2*exp(-0.5*x).*cos(pi*x);plotyy(x,y1,x,y2); 4图形保持hold on/off命令控制是保持原有图形还是刷新原有图形,不带参数的hold命令在两种状态之间进行切换。 例1-5 采用图形保持,在同一坐标内绘制曲线y1=0.2e-0.5xcos(4x) 和y2=2e-0.5xcos(x)。程序如下:x=0:pi/100:2*pi;y1=0.2*exp(-0.5*x)

6、.*cos(4*pi*x);plot(x,y1)hold ony2=2*exp(-0.5*x).*cos(pi*x);plot(x,y2);hold off 1.1.3 设置曲线样式MATLAB提供了一些绘图选项,用于确定所绘曲线的线型、颜色和数据点标记符号,它们可以组合使用。例如,“b-.”表示蓝色点划线,“y:d”表示黄色虚线并用菱形符标记数据点。当选项省略时,MATLAB规定,线型一律用实线,颜色将根据曲线的先后顺序依次。要设置曲线样式可以在plot函数中加绘图选项,其调用格式为:plot(x1,y1,选项1,x2,y2,选项2,xn,yn,选项n) 例1-6 在同一坐标内,分别用不同线

7、型和颜色绘制曲线y1=0.2e-0.5xcos(4x) 和y2=2e-0.5xcos(x),标记两曲线交叉点。程序如下:x=linspace(0,2*pi,1000);y1=0.2*exp(-0.5*x).*cos(4*pi*x);y2=2*exp(-0.5*x).*cos(pi*x);k=find(abs(y1-y2)1e-2); %查找y1与y2相等点(近似相等)的下标x1=x(k); %取y1与y2相等点的x坐标y3=0.2*exp(-0.5*x1).*cos(4*pi*x1); %求y1与y2值相等点的y坐标plot(x,y1,x,y2,k:,x1,y3,bp); 1.1.4 图形标注

8、与坐标控制1图形标注有关图形标注函数的调用格式为:title(图形名称)xlabel(x轴说明)ylabel(y轴说明)text(x,y,图形说明)legend(图例1,图例2,)函数中的说明文字,除使用标准的ASCII字符外,还可使用LaTeX格式的控制字符,这样就可以在图形上添加希腊字母、数学符号及公式等内容。例如,text(0.3,0.5,sin(omegat+beta)将得到标注效果sin(t+)。例1-7 在0x2p区间内,绘制曲线y1=2e-0.5x和y2=cos(4x),并给图形添加图形标注。程序如下:x=0:pi/100:2*pi;y1=2*exp(-0.5*x);y2=cos

9、(4*pi*x);plot(x,y1,x,y2)title(x from 0 to 2pi); %加图形标题xlabel(Variable X); %加X轴说明ylabel(Variable Y); %加Y轴说明text(0.8,1.5,曲线y1=2e-0.5x); %在指定位置添加图形说明text(2.5,1.1,曲线y2=cos(4pix);legend(y1, y2) %加图例 2坐标控制axis函数的调用格式为:axis(xmin xmax ymin ymax zmin zmax)axis函数功能丰富,常用的格式还有:axis equal:纵、横坐标轴采用等长刻度。axis squar

10、e:产生正方形坐标系(缺省为矩形)。axis auto:使用缺省设置。axis off:取消坐标轴。axis on:显示坐标轴。给坐标加网格线用grid命令来控制。grid on/off命令控制是画还是不画网格线,不带参数的grid命令在两种状态之间进行切换。给坐标加边框用box命令来控制。box on/off命令控制是加还是不加边框线,不带参数的box命令在两种状态之间进行切换。例1-8 在同一坐标中,可以绘制3个同心圆,并加坐标控制。程序如下:t=0:0.01:2*pi;x=exp(i*t);y=x;2*x;3*x;plot(y)grid on; %加网格线box on; %加坐标边框ax

11、is equal %坐标轴采用等刻度 1.1.5 图形的可视化编辑MATLAB 6.5版本在图形窗口中提供了可视化的图形编辑工具,利用图形窗口菜单栏或工具栏中的有关命令可以完成对窗口中各种图形对象的编辑处理。在图形窗口上有一个菜单栏和工具栏。菜单栏包含File、Edit、View、Insert、Tools、Window和Help共7个菜单项,工具栏包含11个命令按钮。1.1.6 对函数自适应采样的绘图函数fplot函数的调用格式为:fplot(fname,lims,tol,选项)其中fname为函数名,以字符串形式出现,lims为x,y的取值范围,tol为相对允许误差,其系统默认值为2e-3。

12、选项定义与plot函数相同。 例1-9 用fplot函数绘制f(x)=cos(tan(x)的曲线。命令如下:fplot(cos(tan(pi*x), 0,1,1e-4) 1.1.7 图形窗口的分割subplot函数的调用格式为:subplot(m,n,p)该函数将当前图形窗口分成mn个绘图区,即每行n个,共m行,区号按行优先编号,且选定第p个区为当前活动区。在每一个绘图区允许以不同的坐标系单独绘制图形。例1-10 在图形窗口中,以子图形式同时绘制多根曲线。2. 其他二维图形2.1 其他坐标系下的二维数据曲线图1对数坐标图形MATLAB提供了绘制对数和半对数坐标曲线的函数,调用格式为:semil

13、ogx(x1,y1,选项1,x2,y2,选项2,)semilogy(x1,y1,选项1,x2,y2,选项2,)loglog(x1,y1,选项1,x2,y2,选项2,)例1-11 绘制y=10x2的对数坐标图并与直角线性坐标图进行比较。2极坐标图polar函数用来绘制极坐标图,其调用格式为:polar(theta,rho,选项)其中theta为极坐标极角,rho为极坐标矢径,选项的内容与plot函数相似。例5-12 绘制r=sin(t)cos(t)的极坐标图,并标记数据点。程序如下:t=0:pi/50:2*pi;r=sin(t).*cos(t);polar(t,r,-*);2.2 二维统计分析图

14、在MATLAB中,二维统计分析图形很多,常见的有条形图、阶梯图、杆图和填充图等,所采用的函数分别是:bar(x,y,选项)stairs(x,y,选项)stem(x,y,选项)fill(x1,y1,选项1,x2,y2,选项2,) 例1-13 分别以条形图、阶梯图、杆图和填充图形式绘制曲线y=2sin(x)。程序如下:x=0:pi/10:2*pi;y=2*sin(x);subplot(2,2,1);bar(x,y,g);title(bar(x,y,g);axis(0,7,-2,2);subplot(2,2,2);stairs(x,y,b);title(stairs(x,y,b);axis(0,7,

15、-2,2);subplot(2,2,3);stem(x,y,k);title(stem(x,y,k);axis(0,7,-2,2);subplot(2,2,4);fill(x,y,y);title(fill(x,y,y);axis(0,7,-2,2);MATLAB提供的统计分析绘图函数还有很多,例如,用来表示各元素占总和的百分比的饼图、复数的相量图等等。例1-14 绘制图形:(1) 某企业全年各季度的产值(单位:万元)分别为:2347,1827,2043,3025,试用饼图作统计分析。(2) 绘制复数的相量图:7+2.9i、2-3i和-1.5-6i。 程序如下:subplot(1,2,1);p

16、ie(2347,1827,2043,3025);title(饼图);legend(一季度,二季度,三季度,四季度);subplot(1,2,2);compass(7+2.9i,2-3i,-1.5-6i);title(相量图); 3 隐函数绘图MATLAB提供了一个ezplot函数绘制隐函数图形,下面介绍其用法。(1) 对于函数f = f(x),ezplot函数的调用格式为:ezplot(f):在默认区间-2x2绘制f = f(x)的图形。ezplot(f, a,b):在区间axb绘制f = f(x)的图形。 (2) 对于隐函数f = f(x,y),ezplot函数的调用格式为:ezplot(f

17、):在默认区间-2x2和-2y2绘制f(x,y) = 0的图形。ezplot(f, xmin,xmax,ymin,ymax):在区间xminxxmax和yminyymax绘制f(x,y) = 0的图形。ezplot(f, a,b):在区间axb和ay b绘制f(x,y) = 0的图形。 (3) 对于参数方程x = x(t)和y = y(t),ezplot函数的调用格式为:ezplot(x,y):在默认区间0t2绘制x=x(t)和y=y(t)的图形。ezplot(x,y, tmin,tmax):在区间tmin t tmax绘制x=x(t)和y=y(t)的图形。 例1-15 隐函数绘图应用举例。程

18、序如下:subplot(2,2,1);ezplot(x2+y2-9);axis equalsubplot(2,2,2);ezplot(x3+y3-5*x*y+1/5)subplot(2,2,3);ezplot(cos(tan(pi*x), 0,1)subplot(2,2,4);ezplot(8*cos(t),4*sqrt(2)*sin(t),0,2*pi) 4 三维图形4.1 三维曲线plot3函数与plot函数用法十分相似,其调用格式为:plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,xn,yn,zn,选项n)其中每一组x,y,z组成一组曲线的坐标参数,选项的定义和plot函

19、数相同。当x,y,z是同维向量时,则x,y,z 对应元素构成一条三维曲线。当x,y,z是同维矩阵时,则以x,y,z对应列元素绘制三维曲线,曲线条数等于矩阵列数。 例1-16 绘制三维曲线。程序如下:t=0:pi/100:20*pi;x=sin(t);y=cos(t);z=t.*sin(t).*cos(t);plot3(x,y,z);title(Line in 3-D Space);xlabel(X);ylabel(Y);zlabel(Z);grid on; 4.2 三维曲面1产生三维数据在MATLAB中,利用meshgrid函数产生平面区域内的网格坐标矩阵。其格式为:x=a:d1:b; y=c

20、:d2:d;X,Y=meshgrid(x,y);语句执行后,矩阵X的每一行都是向量x,行数等于向量y的元素的个数,矩阵Y的每一列都是向量y,列数等于向量x的元素的个数。 2绘制三维曲面的函数surf函数和mesh函数的调用格式为:mesh(x,y,z,c)surf(x,y,z,c)一般情况下,x,y,z是维数相同的矩阵。x,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。 例1-17 绘制三维曲面图z=sin(x+sin(y)-x/10。程序如下:x,y=meshgrid(0:0.25:4*pi);z=sin(x+sin(y)-x/10;mesh(x,y,z);ax

21、is(0 4*pi 0 4*pi -2.5 1);此外,还有带等高线的三维网格曲面函数meshc和带底座的三维网格曲面函数meshz。其用法与mesh类似,不同的是meshc还在xy平面上绘制曲面在z轴方向的等高线,meshz还在xy平面上绘制曲面的底座。 例1-18 在xy平面内选择区域-8,8-8,8,绘制4种三维曲面图。程序如下:x,y=meshgrid(-8:0.5:8);z=sin(sqrt(x.2+y.2)./sqrt(x.2+y.2+eps);subplot(2,2,1);mesh(x,y,z);title(mesh(x,y,z)subplot(2,2,2);meshc(x,y,

22、z);title(meshc(x,y,z)subplot(2,2,3);meshz(x,y,z)title(meshz(x,y,z)subplot(2,2,4);surf(x,y,z);title(surf(x,y,z) 3标准三维曲面sphere函数的调用格式为:x,y,z=sphere(n)cylinder函数的调用格式为:x,y,z= cylinder(R,n)MATLAB还有一个peaks 函数,称为多峰函数,常用于三维曲面的演示。 例1-19 绘制标准三维曲面图形。程序如下:t=0:pi/20:2*pi;x,y,z= cylinder(2+sin(t),30);subplot(2,2

23、,1);surf(x,y,z);subplot(2,2,2);x,y,z=sphere;surf(x,y,z);subplot(2,1,2);x,y,z=peaks(30);surf(x,y,z); 4.3 其他三维图形在介绍二维图形时,曾提到条形图、杆图、饼图和填充图等特殊图形,它们还可以以三维形式出现,使用的函数分别是bar3、stem3、pie3 和fill3。bar3函数绘制三维条形图,常用格式为:bar3(y)bar3(x,y) stem3函数绘制离散序列数据的三维杆图,常用格式为:stem3(z)stem3(x,y,z)pie3函数绘制三维饼图,常用格式为:pie3(x)fill3

24、函数等效于三维函数fill,可在三维空间内绘制出填充过的多边形,常用格式为:fill3(x,y,z,c) 例1-20 绘制三维图形:(1) 绘制魔方阵的三维条形图。(2) 以三维杆图形式绘制曲线y=2sin(x)。(3) 已知x=2347,1827,2043,3025,绘制饼图。(4) 用随机的顶点坐标值画出五个黄色三角形。 程序如下:subplot(2,2,1);bar3(magic(4)subplot(2,2,2);y=2*sin(0:pi/10:2*pi);stem3(y);subplot(2,2,3);pie3(2347,1827,2043,3025);subplot(2,2,4);fill3(rand(3,5),rand(3,5),rand(3,5), y ) 例5-21 绘制多峰函数的瀑布图和等高线图。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1