ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:35.41KB ,
资源ID:5961299      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5961299.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Eblfhg考研数学线性代数打印资料.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Eblfhg考研数学线性代数打印资料.docx

1、Eblfhg考研数学线性代数打印资料生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。泰戈尔线性代数知识点框架(一)线性代数的学习切入点:线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。关于线性方程组的解,有三个问题值得讨论:(1)、方程组是否有解,即解的存在性问题;(2)、方程组如何求解,有多少个解;(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题

2、。高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:(1)、把某个方程的k倍加到另外一个方程上去;(2)、交换某两个方程的位置;(3)、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。任意的线性方程组都可以通过初等变换化为阶梯形方程组。由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。可以用矩阵的

3、形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。系数矩阵和增广矩阵。高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组

4、有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若rn,则方程组有无穷多解。在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。利用高斯消元法和解的判别定理,以及能够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。对于n个方程n个未

5、知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。线性代数知识点框架(二)在利用高斯消元法求解线性方程组的过程中,涉及到一种重要的运算,即把

6、某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算。数域上的n元有序数组称为n维向量。设向量a=(a1,a2,.,an),称ai是a的第i个分量。n元有序数组写成一行,称为行向量,同时它也可以写为一列,称为列向量。要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。矩阵与向量通过行向量组和列向量组相联系。对给定的向量组,可以定义它的一个线性组合。线性表出定义的是一个向量和另外一组向量之间的相互关系。利用矩阵的列向量组,我们可以把一个线性方程组有没

7、有解的问题转化为一个向量能否由另外一组向量线性表出的问题。同时要注意这个结论的双向作用。从简单例子(如几何空间中的三个向量)可以看到,如果一个向量a1能由另外两个向量a2、a3线性表出,则这三个向量共面,反之则不共面。为了研究向量个数更多时的类似情况,我们把上述两种对向量组的描述进行推广,便可得到线性相关和线性无关的定义。通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。部分组线性相关,整个向量组线性相关。向量组线性无关,延伸组线性无关。回到线性方

8、程组的解的问题,即一个向量b在什么情况下能由另一个向量组a1,a2,.,an线性表出?如果这个向量组本身是线性无关的,可通过分析立即得到答案:b, a1, a2, ., an线性相关。如果这个向量组本身是线性相关的,则需进一步探讨。任意一个向量组,都可以通过依次减少这个向量组中向量的个数找到它的一个部分组,这个部分组的特点是:本身线性无关,从向量组的其余向量中任取一个进去,得到的新的向量组都线性相关,我们把这种部分组称作一个向量组的极大线性无关组。如果一个向量组A中的每个向量都能被另一个向量组B线性表出,则称A能被B线性表出。如果A和B能互相线性表出,称A和B等价。一个向量组可能又不止一个极大

9、线性无关组,但可以确定的是,向量组和它的极大线性无关组等价,同时由等价的传递性可知,任意两个极大线性无关组等价。注意到一个重要事实:一个线性无关的向量组不能被个数比它更少的向量组线性表出。这是不难理解的,例如不共面的三个向量(对应线性无关)的确不可能由平面内的两个向量组成的向量组线性表出。一个向量组的任意两个极大线性无关组所含的向量个数相等,我们将这个数目r称为向量组的秩。向量线性无关的充分必要条件是它的秩等于它所含向量的数目。等价的向量组有相同的秩。有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组的有解的充分必要条件:若系数矩阵的列向量组的秩和增广

10、矩阵的列向量组的秩相等,则有解,若不等,则无解。向量组的秩是一个自然数,由这个自然数就可以判断向量组是线性相关还是线性无关,由此可见,秩是一个非常深刻而重要的概念,故有必要进一步研究向量组的秩的计算方法。 线性代数知识点框架(三)为了求向量组的秩,我们来考虑矩阵。矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的

11、列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。总而言之,初等变换不会改变矩阵的秩。因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。矩阵的秩,同时又可定义为不为零的子式的最高阶数。满秩矩阵的行列式不等于零。非满秩矩阵的行列式必为零。既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。另外,有

12、唯一解和有无穷多解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,rn,有无穷多解。齐次线性方程组的解的结构问题,可以用基础解系来表示。当齐次线性方程组有非零解时,基础解系所含向量个数等于n-r,用基础解系表示的方程组的解的集合称为通解。通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。线性代数知识点框架(四)在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。矩阵的加法和数乘,与向量的运算类同。矩阵的另外一个重要应用:线性

13、变换(最典型例子是旋转变换)。即可以把一个矩阵看作是一种线性变换在数学上的表述。矩阵的乘法,反映的是线性变换的叠加。如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。矩阵乘法的特点:若C=AB,则C的第i行、第j列的元素是A的第i行与B的第j列的元素对应乘积之和;A的列数要和B的行数相同;C的行数是A的行数,列数是B的列数。需要主义的是矩阵乘法不满足交换律,满足结合律。利用矩阵乘积的写法,线性方程组可更简单的表示为:Ax=b。对于C=AB,还可作如下分析:将左边的矩阵A写成列向量组的形式,即意味着C的列向量组能由A的列向量组表示,从而推知C的列

14、秩小于等于A的列秩;将右边的矩阵B写成行向量组的形式,即意味着C的行向量组能由B的行向量组表示,从而推知C的行秩小于等于B的行秩,再考虑到矩阵的行秩等于列秩等于矩阵的秩,最终可得到结论,C的秩小于等于A的秩,也小于等于B的秩,即矩阵乘积的秩总不超过任一个因子的秩。关于矩阵乘积的另外一个重要结论:矩阵乘积的行列式等于各因子的行列式的乘积。一些特殊的矩阵:单位阵、对角阵、初等矩阵。尤其要注意,初等矩阵是单位阵经过一次初等变换得到的矩阵。每一个初等矩阵对应一个初等变换,因为左乘的形式为PA(P为初等矩阵),将A写成行向量组的形式,PA意味着对A做了一次初等行变换;同理,AP意味着对A做了一次初等列变

15、换,故左乘对应行变换,右乘对应列变换。若AB=E,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。第一种求逆阵的方法:伴随阵。这种方法的理论依据是行列式的按行(列)展开。矩阵可逆,行列式不为零,行(列)向量组线性无关,满秩,要注意这些结论之间的充分必要性。单位阵和初等矩阵都是可逆的。若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,因为初等矩阵满秩,故最后化成的阶梯型(最简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。进一步,既然可逆矩阵可以通过初等变换化为单位阵,而初等变换对应的是初等矩阵,即意味着:可逆矩阵可以通过左(右)乘一系列

16、初等矩阵化为单位阵,换言之可逆矩阵可看作是一系列初等矩阵的乘积,因为单位阵在乘积中可略去。可逆矩阵作为因子不会改变被乘(无论左乘右乘)的矩阵的秩。由于可逆矩阵可以看作是一系列初等矩阵的乘积,可以想象,同样的这一系列初等矩阵作用在单位阵上,结果是将这个单位阵变为原来矩阵的逆阵,由此引出求逆阵的第二种方法:初等变换。需要注意的是这个过程中不能混用行列变换,且同样是左乘对应行变换,右乘对应列变换。矩阵分块,即可把矩阵中的某些行和列的元素看作一个整体,对这些被看作是整体的对象构成的新的矩阵,运算法则仍然适用。将矩阵看成一些列行向量组或列向量组的形式,实际也就是一种最常见的对矩阵进行分块的方式。线性代数

17、知识点框架(五)由矩阵乘法的特点可知,计算一个矩阵A的n次方,相对于数乘运算来说要繁琐得多。我们注意到,如果存在可逆矩阵P和对角矩阵,使得A=P*P逆,那么有:An=(P*P逆)n=(P*P逆)(P*P逆)(P*P逆)=P*n*P逆由于对角矩阵的乘方容易计算,从而问题得到大幅简化。对矩阵A、B来说,如果存在着可逆矩阵P,使得A=P *B*P逆,我们称A与B是相似的。特别地,如果A与对角矩阵相似,则称A可对角化。由此可见,如果矩阵A可对角化,那么An的计算将变得简单许多。故可把相似的说法理解为一个在寻找矩阵乘方简便运算的过程中提出来的概念。相似的矩阵有许多共同的性质,如有相同的秩和相同的行列式值

18、,相似的矩阵或者都可逆,或者都不可逆,等等。设矩阵A相似于对角矩阵,那么:A=P*P逆 AP=P,其中P为可逆矩阵 A*(a1, a2, , an)=(a1, a2, , an)*,其中a1, a2, , an分别为可逆矩阵P的列向量,1, 2, , n分别为对角矩阵的主对角线上元素 A*a1=1*a1,A*a2=2*a2,A*an=n*an也就是说,矩阵A能对角化的关键,在于找到n个常数1, 2, , n和n个线性无关的向量a1, a2, , an(因为这些向量构成的矩阵可逆,这也决定了零向量不是特征向量),使得A*ai=i*ai(i=1,2,3,n)。我们把满足条件A*ai=i*ai的i称

19、为矩阵A的特征值,ai称为矩阵A对应特征值i的特征向量。换句话说,一个矩阵能够相似于对角矩阵的充分必要条件是:存在n个线性无关的特征向量。接下来的问题是如何求矩阵的特征值和特征向量?一个方案是从定义A*ai=i*ai出发,直接寻找满足这样要求的i 和ai,但这一般是不容易做到的,故还有必要去建立一种更为普遍的方法。设A*ai=i*ai(A-i*E)*ai=0 对i来说,ai是齐次线性方程组(A-i*E)*X=0的一个非零解(因为ai构成的向量组线性无关) 方程组的系数行列式det(A-i*E)=0由此可见,每一个特征值i都是多项式det(A-*E)在指定数域(一般是实数域)上的根,我们称这个多

20、项式为矩阵A的特征多项式,不难验证,它是一个的n次多项式。依据特征方程det(A-*E)=0,即可求出矩阵A的全部特征值。对矩阵A的每个特征值i,求齐次线性方程组(A-i*E)*X=0的解,得到的全部非零解(一般可用基础解系表示)就是A的属于特征值i的全部特征向量。由此可得到两点启示:对同一个特征值来说,特征向量不唯一;对同一特征值来说,特征向量的线性组合仍为特征向量。相似的矩阵有相同的特征多项式和特征值,但有相同特征多项式的两个矩阵不一定相似。相似的矩阵有相同的秩,故一个可对角化矩阵的非零特征值的数目即为其秩。在求出矩阵的全部特征值和全部特征向量以后,剩下的问题就是判断这些所有的特征向量中有

21、没有n个是线性无关的?如果有,意味着矩阵可对角化,如果没有,则矩阵不可对角化。对一个矩阵A来说,考虑到其n个特征值可能相同也可能不同,故最一般的情况应该是把A的这n个特征值分为m组,分别为1, 2, , m,每组的个数分别为j1,j2,jm(注意有j1+j2+jm=n),对每个i(i=1,2,m),齐次线性方程组(A-i*E)*X=0的基础解系解向量的个数分别为r1,r2,rm,这些基础解系各自当然都是A的线性无关的特征向量,自然会进一步联想,把这m组共r1+r2+rm个向量合在一起情况如何,是否仍线性无关?经过考察发现,矩阵A的属于不同的特征值的特征向量一定线性无关。故上述r1+r2+rm个

22、来自不同特征值的特征向量构成的向量组确实是线性无关的。于是不难有如下结论,若r1+r2+rm=n,则A有n个线性无关的特征向量,从而A可对角化,若r1+r2+rm0。判断一个二次型的正定性,一种选择是直接从定义出发,另一种方案可考虑利用规范型(因为无论正定负定都是一个定性而非定量的结论),而实际上正定二次型的许多性质也确实能通过其规范型相联系,这是值得注意的。同济五版线性代数习题解读(一)1、利用对角线法则计算行列式,可以通过几道小题熟悉一下把行列式化成上(下)三角的过程,基本题。2、3题涉及排列以及行列式的展开准则,不是太重要,了解即可。4、5、6题是一些计算行列式的练习,不同特点的行列式通

23、常有不同的方法,常见的就是化为上(下)三角,按行(列)展开,某一行(列)是和的形式可进行拆分,基本题,要通过这些练习来熟练行列式的运算这一块。5题虽然是以方程形式给出,但考察点还是计算。7、行列式性质的应用,比较重要的题型,重在对思维的训练,而且该题的结论很常用,最好掌握。8、一些难度较高的行列式的计算题,涉及到不少技巧,而这些技巧通常初学者是想不到的,这时候可以看看答案,体会一下答案的做法,对这块内容的要求和不定积分是类似的。9、设计巧妙的题目,隐含考点是行列式按行展开的性质:若是相同行(列)的元素和代数余子式对应相乘求和,结果是行列式的值;若是不同行(列)的元素和代数余子式对应相乘求和,结

24、果为0。注意此题要求的结果是第三行的代数余子式的某种组合,而根据代数余子式的定义可知,这与题给的行列式中的第三行的元素是无关的,那就可以根据需要把第三行的元素替换为前面要求的式子中的那些系数,这样问题就简化为求一个新的行列式,而无需烦琐的进行四次求代数余子式的运算。此题技巧性较强,但这个构思方法值得掌握。10、克兰姆法则的应用,归根结底还是计算行列式。11、12题是通过行列式来判断齐次方程组的解的情况,基本题,在已经复习完一遍线代后也可以用其它方法(化阶梯行、求秩)来做。总的来说,第一章的习题大都非常基本,集中于计算层面的考察,没有理解上的难度。同济五版线性代数习题解读(二)1 、矩阵乘法的基本练习,简单题,但计算很容易出错,不可轻视,(5)小题实际上就是第五章要接触的二次型。2、直接考察矩阵相关运算,基本题。3、矩阵的乘法实际上是表示一个线性变换,题目给出了从y到x的变换,还给出了从z到y的变换,要求z到x的变换。既然一个矩阵可以表示一个线性变换,两个矩阵的乘积即可理解为两个变换的叠加,这也是提供了一个侧面去理解矩阵相乘的意义。4、5题实际上都是通过一些具体的例子来加深对矩阵运算的理解,比如矩阵乘法不能交换、不能像数乘那样约去因子,等等,这些例子是比较重要的,因为有时能在考场上派上用场,需要熟悉。6、7题是求矩阵乘方的题目,基本题,但要注意

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1