ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:96.71KB ,
资源ID:5892177      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5892177.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(实验五MATLAB解方程与函数极值.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

实验五MATLAB解方程与函数极值.docx

1、实验五 MATLAB解方程与函数极值实验五 MATLAB解方程与函数极值1 线性方程组求解2 非线性方程数值求解3 常微分方程初值问题的数值解法4 函数极值 1 线性方程组求解1.1 直接解法1利用左除运算符的直接解法对于线性方程组Ax=b,可以利用左除运算符“”求解: x=Ab例1 用直接解法求解下列线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;x=Ab2利用矩阵的分解求解线性方程组矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有LU分解、QR分解、Cholesky分解,以及S

2、chur分解、Hessenberg分解、奇异分解等。(1) LU分解矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要方阵A是非奇异的,LU分解总是可以进行的。MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为:L,U=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。L,U,P=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。当然矩阵X同样必须是方阵。实现LU分解后,线性方程组Ax=b的解x=U(Lb)或x=U(LPb),这

3、样可以大大提高运算速度。例2 用LU分解求解例1中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;L,U=lu(A);x=U(Lb)或采用LU分解的第2种格式,命令如下:L,U ,P=lu(A);x=U(LP*b) (2) QR分解对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:Q,R=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。Q,R,E=qr(X):产生一个一个正交矩阵

4、Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。实现QR分解后,线性方程组Ax=b的解x=R(Qb)或x=E(R(Qb)。例3 用QR分解求解例1中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,-9,6,0;Q,R=qr(A);x=R(Qb)或采用QR分解的第2种格式,命令如下:Q,R,E=qr(A);x=E*(R(Qb)(3) Cholesky分解如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=RR。MATLAB函数chol

5、(X)用于对矩阵X进行Cholesky分解,其调用格式为:R=chol(X):产生一个上三角阵R,使RR=X。若X为非对称正定,则输出一个出错信息。R,p=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足RR=X(1:q,1:q)。实现Cholesky分解后,线性方程组Ax=b变成RRx=b,所以x=R(Rb)。例4 用Cholesky分解求解例1中的线性方程组。命令如下:A=2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4;b=13,

6、-9,6,0;R=chol(A)? Error using = cholMatrix must be positive definite命令执行时,出现错误信息,说明A为非正定矩阵。1.2 迭代解法迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代解法主要包括 Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。1Jacobi迭代法对于线性方程组Ax=b,如果A为非奇异方阵,即aii0(i=1,2,n),则可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素,L与U为A的下三角阵和上三角阵,于是Ax=b化为:x=D-1(L+U)x+D-1b与之对

7、应的迭代公式为:x(k+1)=D-1(L+U)x(k)+D-1b这就是Jacobi迭代公式。如果序列x(k+1)收敛于x,则x必是方程Ax=b的解。Jacobi迭代法的MATLAB函数文件Jacobi.m如下:function y,n=jacobi(A,b,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y; y=B*x0+f; n=n+1;end例5用Jacobi迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。在命令中调用函数文件Jacobi.m,命令如下:A=10,-1,0;-1,10,-2;0,-2,10;b=9,7,6

8、; function x,n=jacobi(A,b,0,0,0,1.0e-6)2Gauss-Serdel迭代法在Jacobi迭代过程中,计算时,已经得到,不必再用,即原来的迭代公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b,于是得到:x(k+1)=(D-L)-1Ux(k)+(D-L)-1b该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel迭代用新分量代替旧分量,精度会高些。Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下:function y,n=gauseidel(A,b

9、,x0,eps)if nargin=3 eps=1.0e-6;elseif nargin=eps x0=y; y=G*x0+f; n=n+1;例6 用Gauss-Serdel迭代法求解下列线性方程组。设迭代初值为0,迭代精度为10-6。在命令中调用函数文件gauseidel.m,命令如下: A 10,-1,0;-1,10,-2;0,-2,10;b=9,7,6;x,n=gauseidel(A,b,0,0,0,1.0e-6)例7 分别用Jacobi迭代和Gauss-Serdel迭代法求解下列线性方程组,看是否收敛。命令如下:a=1,2,-2;1,1,1;2,2,1;b=9;7;6;x,n=jaco

10、bi(a,b,0;0;0)x,n=gauseidel(a,b,0;0;0) 是待求根的函数文件名 2 非线性方程数值求解2.1 单变量非线性方程求解 在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。该函数的调用格式为: z=fzero(fname,x0,tol,trace)其中fname,x0为搜索的起点。一个函数可能有多个根,但fzero函数只给出离x0最近的那个根。tol控制结果的相对精度,缺省时取tol=eps,trace指定迭代信息是否在运算中显示,为1时显示,为0时不显示,缺省时取trace=0。 例8 求f(x)=x-10x+2=0在x0=0.5附近的根。

11、 步骤如下:(1) 建立函数文件funx.m。 function fx=funx(x) fx=x-10.x+2; (2) 调用fzero函数求根。 z=fzero(funx,0.5) z = 0.3758X=fsolve(fname,x0)例9 解方程 function q=myx(x)q=x.*exp(x-1); see myx.mxx=fsolve(myx,0)2.2 非线性方程组的求解 对于非线性方程组F(X)=0,用fsolve函数求其数值解。fsolve函数的调用格式为: X=fsolve(fun,X0,option)其中X为返回的解,fun是用于定义需求解的非线性方程组的函数文件名

12、,X0是求根过程的初值,option为最优化工具箱的选项设定。最优化工具箱提供了20多个选项,用户可以使用optimset命令将它们显示出来。如果想改变其中某个选项,则可以调用optimset()函数来完成。例如,Display选项决定函数调用时中间结果的显示方式,其中off为不显示,iter表示每步都显示,final只显示最终结果。optimset(Display,off)将设定Display选项为off。 例9 求下列非线性方程组在(0.5,0.5) 附近的数值解。 (1) 建立函数文件myfun.m。function q=myfun(p)x=p(1);y=p(2);q(1)=x-0.6*

13、sin(x)-0.3*cos(y);q(2)=y-0.6*cos(x)+0.3*sin(y); (2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。x=fsolve(myfun,0.5,0.5,optimset(Display,off)x = 0.6354 0.3734将求得的解代回原方程,可以检验结果是否正确,命令如下:q=myfun(x)q = 1.0e-009 * 0.2375 0.2957可见得到了较高精度的结果。例10 求解 function q=xyz(p)x=p(1);y=p(2);z=p(3);q=zeros(3,1);q(1)=sin(x).2+

14、y.3+exp(z)-7;q(2)=5*x.2+3.y-z.3+3;q(3)=x-y-z-3; see xyz.mxyz=fsolve(xyz,0 0 0)练习1 2 3 2.2 非线性方程组的数值解法1、 不动点迭代:迭代公式例1function y=fx(x)y(1)=0.1*(x(1)*x(1)+x(2)*x(2)+8);y(2)=0.1*(x(1)*x(2)*x(2)+x(1)+8);y=y(1),y(2);function s=staticiterate(x,eps)%不动点迭代法求非线性方程组,x为迭代初值,eps为允许误差值if nargin=1 eps=1e-6;elseif

15、nargin=eps%循环迭代 x=xx; xx=fx(x);ends=xx;return2、 Newton迭代法解出,其足够小即可function s=newtoniterate(x,eps)%newton迭代法求非线性方程组,X为迭代初值,eps为允许误差值if nargin=1 eps=1e-6;elseif nargin=eps%循环迭代 x=x0+x; x1=fx1(x); x2=-dfx1(x); x3=inv(x2); x0=x3*x1;ends=x0+x;returnfunction y=dfx1(x)y(1)=2*x(1)-10;y(2)=2*x(2);y(3)=x(2)*x

16、(2)+1;y(4)=2*x(1)*x(2)-10;y=y(1),y(2);y(3),y(4);function y=fx1(x)y(1)=x(1)*x(1)-10*x(1)+x(2)*x(2)+8;y(2)=x(1)*x(2)*x(2)+x(1)-10*x(2)+8;y=y(1),y(2);3 常微分方程初值问题的数值解法1、 微分方程:解析解:dsolve(Dy=1+y2) tan(t-C1) dsolve(Dy=1+y2,y(0)=1) tan(t+1/4*pi) dsolve(D2y=cos(2*x)-y,Dy(0)=0,y(0)=1)数值解:t,x=ode45(f,t0,tf,x0)

17、例1、解微分方程时间区间从到各节点上的数值解x=-x3;x(0)=1function exer=dfun(t,x)exer=-x.3;t,x=ode45(dfun,0,1,1)例2、解微分方程,时间区间从到各节点上的数值解y”-(1-y2)y+y=0y1=y;y2=yy1=y2;y2=(1-y12)y2-y1function dy=vdp(t,y)dy=y(2);(1-y(1)2)*y(2)-y(1);t,y=ode45(vdp,0,25,3,3)plot(t,y(:,1),o)hold onplot(t,y(:,2),*)plot(t,y(:,1),t,y(:,2)legend(y(t),y

18、(t)练习:1 求方程时间区间从到各节点上的数值解2 求方程,初值为,时间区间从到各节点上的数值解3 求方程时间区间从到各节点上的数值解4 求方程,初值为,时间区间为从到各节点上的数值解差分方程1, 例1:差分方程,其中初始条件为b=1;a=1,-1,0.9;x=1,zeros(1,7);y1=filter(b,a,x)初始条件为b=1;a=1,-1,0.9;x=1,zeros(1,7);y=1,2;xi=filtic(b,a,y);y2=filter(b,a,x,xi)例2:差分方程: ,初始条件b=1 1 1/3;a=1,-0.95,0.9025;y=-2,-3;x=1,1;xi=filt

19、ic(b,a,y,x);n=0:7; function exer=dfun(t,x)t,x=ode45(dfun,0,1,1) t,x=ode45(dfun,0,1,1) t,x=ode45(dfun,0,1,1)x=cos(pi*n/3);y1=filter(b,a,x,xi)练习:Od45怎么求解差分方程组1 求解,其中,初始条件2,初始条件4 函数极值 MATLAB提供了基于单纯形算法求解函数极值的函数fmin和fmins,它们分别用于单变量函数和多变量函数的最小值,其调用格式为: x=fmin(fname,x1,x2) x=fmins(fname,x0)这两个函数的调用格式相似。其中f

20、min函数用于求单变量函数的最小值点。fname是被最小化的目标函数名,x1和x2限定自变量的取值范围。fmins函数用于求多变量函数的最小值点,x0是求解的初始值向量。MATLAB没有专门提供求函数最大值的函数,但只要注意到-f(x)在区间(a,b)上的最小值就是f(x)在(a,b)的最大值,所以fmin(f,x1,x2)返回函数f(x)在区间(x1,x2)上的最大值。 例13 求f(x)=x3-2x-5在0,5内的最小值点。 (1) 建立函数文件mymin.m。function fx=mymin(x)fx=x.3-2*x-5; (2) 调用fmin函数求最小值点。x=fmin(mymin,0,5)x= 0.8165

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1