ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:732.54KB ,
资源ID:5867308      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5867308.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(注射注塑模具外文翻译外文文献翻译中英文翻译外文翻译.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

注射注塑模具外文翻译外文文献翻译中英文翻译外文翻译.docx

1、注射注塑模具外文翻译外文文献翻译中英文翻译外文翻译外文资料翻译系 部: 专 业: 姓 名: 学 号: 外 文 出 处: dvanced English literacy course (用外文写) 附 件: 指导老师评语签名: 年 月 日第一篇译文(中文)2.3注射模2.3.1注射模塑 注塑主要用于热塑性制件的生产,它也是最古老的塑料成型方式之一。目前,注塑占所有塑料树脂消费的30%。典型的注塑产品主要有杯子器具、容器、机架、工具手柄、旋钮(球形捏手)、电器和通讯部件(如电话接收器),玩具和铅管制造装置。聚合物熔体因其较高的分子质量而具有很高的粘性;它们不能像金属一样在重力流的作用下直接被倒入

2、模具中,而是需要在高压的作用下强行注入模具中。因此当一个金属铸件的机械性能主要由模壁热传递的速率决定,这决定了最终铸件的晶粒度和纤维取向,也决定了注塑时熔体注入时的高压产生强大的剪切力是物料中分子取向的主要决定力量。由此所知,成品的机械性能主要受注射条件和在模具中的冷却条件影响。注塑已经被应用于热塑性塑料和热固性塑料、泡沫部分,而且也已经被改良用于生产反应注塑过程,在此过程中,一个热固树脂系统的两个组成部分在模具中同时被注射填充,然后迅速聚合。然而大多数注塑被用热塑性塑料上,接下来的讨论就集中在这样的模具上。典型的注塑周期或流程包括五个阶段(见图2-1):(1)注射或模具填充;(2)填充或压紧

3、;(3)定型;(4)冷却;(5)零件顶出。 图2-1 注塑流程塑料芯块(或粉末)被装入进料斗,穿过一条在注射料筒中通过旋转螺杆的作用下塑料芯块(或粉末)被向前推进的通道。螺杆的旋转迫使这些芯块在高压下对抗使它们受热融化的料筒加热壁。加热温度在265至500华氏度之间。随着压力增强,旋转螺杆被推向后压直到积累了足够的塑料能够发射。注射活塞迫使熔融塑料从料筒,通过喷嘴、浇口和流道系统,最后进入模具型腔。在注塑过程中,模具型腔被完全充满。当塑料接触冰冷的模具表面,便迅速固化形成表层。由于型芯还处于熔融状态,塑料流经型芯来完成模具的填充。典型地,在注塑过程中模具型腔被填充至95%98%。然后模具成型过

4、程将进行至压紧阶段。当模具型腔充满的时候,熔融的塑料便开始冷却。由于塑料冷却过程中会收缩,这增加了收缩痕、气空、尺寸不稳定性等瑕疵。为了弥补收缩,额外的塑料就要被压入型腔。型腔一旦被填充,作用于使物料熔化的压力就会阻止模具型腔中的熔融塑料由模具型腔浇口处回流。压力一直作用到模具型腔浇口固化。这个过程可以分为两步(压紧和定型),或者一步完成(定型或者第二阶段)。在压紧过程中,熔化物通过补偿收缩的保压压力来进入型腔。固化成型过程中,压力仅仅是为了阻止聚合物熔化物逆流。固化成型阶段完成之后,冷却阶段便开始了。在这个阶段中,部件在模具中停留某一规定时间。冷却阶段的时间长短主要取决于材料特性和部件的厚度

5、。典型地,部件的温度必须冷却到物料的喷出温度以下。冷却部件时,机器将熔化物塑炼以供下一个周期使用。高聚物受剪切作用和电热丝的能量情况影响。一旦喷射成功,塑炼过程便停止了。这是在冷却阶段结束之前瞬间发生的。然后模具打开,部件便生产出来了。2.3.2注塑模具注塑模具与它们的生产出来的产品一样,在设计、精密度和尺寸方面各不相同。热塑性模具的功能主要是把可塑性聚合物制成人们想要的形状,然后再将模制部件冷却。模具主要由两个部件组成:(1)型腔和型芯,(2)固定型腔和型芯的底座。模制品的尺寸和重量限制了模具型腔的数量,同时也决定了所需设备的能力。从模具成型过程考虑,模具设计时要能安全合模、注射、脱模的作用

6、力。此外,浇口和流道的设计必须允许有效的流动以及模具型腔均匀填充。图2-2举例说明了典型注射模具中的部件。模具主要由两部分组成:固定部分(型腔固定板),熔化的聚合物被注入的旁边;在注塑设备结尾或排出旁边的瓣合(中心板)部分。模具这两部分之间的分隔线叫做分型线。注射材料通过一条叫做浇口的中心进料通道被转运。浇口位于浇口轴套的上面,它逐渐缩小(锥形)是为了促进模具打开时浇注材料的释放。在多型腔模具中,主流道将高分子聚合熔化物提供到流道系统中,流道系统通过浇口流入每个模具型腔。中心板支撑主型芯。主型芯的用途是确立部件的内部结构。中心板有一个支持或支撑板。支撑板反过来被背对注塑模顶杆空间的U型结构的柱

7、子支撑,注塑模顶杆空间由背面的压板和垫块组成。被固定在中心板上的U型结构,为也被叫做脱模行程的顶出行程提供了空间。在固化的过程中,部件从主型芯周围收缩以至于当模具打开的时候,部件和浇口随着瓣合机构一起被带出来。接着,中央的起模杆被激活,引起脱模板向前移动以至于顶杆能够推动部件离开型芯。带有冷却通道的上下模被提供,冷却通道通过冷却水循环流通来吸收热塑性高分子聚合熔融物传递给模具的热量。模具型腔也包含好的通风口(对于5毫米而言,通风口应该为0.02到0.08毫米)来确保填充过程中没有空气滞留在模具型腔内。图2-2 注塑模具1顶杆 2顶出板 3导套 4导柱 5下顶针板 6脱件销 7复位杆 8限位杆9

8、导柱 10导柱 11型腔板 12浇口套 13塑料工件 14型芯现在使用的有六种基本注射模具类型。它们是:(1)双板模;(2)三板模;(3)热流道模具;(4)绝热保温流道模具;(5)温流道模具;和(6)重叠压塑模具。图2-3和图2-4阐明了这六种基本注射模具类型。1.双板模一个双板模具由每块都带有型腔和型芯的两块平板组成。平板被固定在压板上。瓣合机构包含工件自动拆卸机构和流道系统。所有注射模具的基本设计都有这个思想。双板模具是用来制作要求大型浇口制品的最合理的工具。2.三板模这种类型的模具由三块板组成:(1)固定板或压板被连接到固定压盘上,通常包含主流道和分流道;(2)当模具打开的时候,包含分流

9、道和浇口中间板或型腔固定板是被允许浮动的;(3)活动板或阳模板包含模制件和用来除去模制件的顶出装置。当按压进行打开的时候,中间板和活动板一起移动,因此释放了主流道和分流道系统和清除了浇口处模制品的赘物。当模具打开的时候,这种设计类型的模具使分离流道系统和模制件变成了可能。这种模具设计让点浇口浇注系统能够运用。3.热流道模具在这个注射模具的流程中,分流道要保持热的,目的是使熔融的塑料一直处于流动的状态。实际上,这是一个“无流道”模具流程,有时候它也被叫做无流道模具。在无流道模具中,分流道被包含在自己的板中。热流道模具除了模塑周期中模具的分流道部分不被打开这点外,其他地方与三板注射模具相似。加热流

10、道板与剩下的冷却部分的模具是绝缘的。分流道中除了热加板,模具中剩余部分是一个标准的两板模具。无流道模具相比传统的浇口流道模具有几个优点。无流道模具没有模具副产品(浇口,分流道,主流道)被处理或者再利用,也没有浇口与制件的分离。周期仅仅要求制件被冷却和从模具中脱离。在这个系统中,从注射料筒到模具型腔,温度能够达到统一。4.绝热保温流道模具绝热流道模具是热流道模具的一种演变。在这种类型的模具中,分流道材料的外表面充当了绝缘体来让熔融材料通过。在隔热的模具中,通过保留自己的温度使模具中的物料一直是熔化的。有时候,一个分料梭和热探测器被加入模具中来增加柔韧性。这种类型的模具对于多孔中心浇口的制件来说是

11、理想的。5.温流道模具它是热流道模具的一种演变。在这种模具中,流道而不是流道板被加热。这是通过电子芯片嵌入探测器实现的。6.重叠压塑模具重叠压塑注射模具顾名思义。一个多重两板模具其中的一块板被放在另一块板的上面。这种结构也可以用在三板模具和热流道模具上。两板重叠结构使单一的挤压输出量加倍,与一个型腔数量相同的两板模具相比,还减少了一半的合模压力。这种方式也被叫做“双层模塑”。2.3.3压膜机1.传统的注塑机在这个流程中,塑料颗粒或粉末被倒入一个机器料斗中,然后被送入加热料筒室。一个活塞压缩物料,迫使物料渐进地通过加热料筒中物料被分料梭慢慢散开的加热区域。分料梭被安装在料筒的中心,目的是加速塑料

12、体中心的加热。分料梭也有可能被加热,以便塑料能够内外一起被加热。物料从加热料斗流经喷嘴进入模具。喷嘴是料斗和模具之间的密封装置它被用来阻止因为剩余压力而引起的物料泄露。模具在注塑机的末端被夹具夹紧闭合。对于聚苯乙烯而言,机器末端两三吨的压力通常用在之间和流道系统中每个小的投影面积上。传统的活塞式机器是唯一能生产斑点部分的类型的机器。另一种类型的注塑机将塑料材料充分地混合,以至于仅有一种颜色被生产出来。2.柱塞式预塑机这种机器使用了分料梭活塞加热器来预塑塑料颗粒。塑料颗粒变成熔化状态之后,液态的塑料被倒入一个蓄料室,直到塑料准备好被压入模具。这种类型的机器比传统的机器生产零件的速度更快,因为在制

13、件冷却的时间中,模具腔被填满进行喷射。由于注射活塞在流动的物料中工作,因此在压缩颗粒的时候没有压力损失。这种现象能够应用在带有更多投影面积的大型制件上。柱塞式预塑机的其他特点与传统的单一活塞式注塑机是一样的。图2-5举例说明了柱塞式预塑机。3.螺杆式预塑机在这种注塑机中,用挤压机来塑化塑料物料。旋转的螺杆使塑料芯块向前,提供给挤压机料筒的加热内壁。熔融的,塑化的物料从挤压机移动到一个蓄料室,然后通过注射活塞移动到模具中。螺杆的应用有以下优势:(1)便于物料更好的混合及塑料溶化后的剪切作用;(2)流动物料硬度的范围更广及热敏材料可以流动;(3)能在更短的时间内进行色泽改变;(4)模具制件中的应力

14、更小4.往复式螺杆注塑机这种类型的注塑机使用了一个水平的挤压机来代替加热室。螺杆的旋转使塑料物料向前移动通过挤压机料筒。随着物料流经带螺杆的加热料筒,物料从颗粒状态变为塑料熔融状态。螺杆往复的过程中,传递给模制物料的热量是由螺杆和挤压机的料筒壁之间的摩擦和传导引起的。当物料向前移动的时候,螺杆返回到在挤压机料筒前方决定物料容量的行程开关处。在这个时候,与典型挤压机类似的挤压过程结束了。当物料注射到模具中,螺杆向前移动来转移料筒中的物料。在这个注塑机中,螺杆既充当活塞,又充当螺杆。模具中的浇口截面冻结阻止回流之后,螺杆开始旋转并且向后移动,进行下一个周期。图2-5展示了往复式螺杆注塑机。这种形式

15、的注塑有几个优点。它更有效地塑化热敏感材料,由于螺杆的混合作用更快地混合色泽。给材料加热的文都能够更低,并且整个周期时间可以更短。第一篇英文(原文)2.3 injection molds2.3.1 Injection molding Injection molding is principally used for the production of thermoplastic parts, and it is also one of the oldest. Currently injection-molding accounts for 30% of all plastics resin c

16、onsumption. Typical injection-molded products are cups, containers, housings, tool handles, knobs, electrical and communication components (such as telephone receivers), toys, and plumbing fittings. Polymer melts have very high viscosities due to their high molecular weights; they cannot be poured d

17、irectly into a mold under gravity flow as metals can, but must be forced into the mold under high pressure. Therefore while the mechanical properties of a metal casting arepredominantly determined by the rate of heat transfer from the mold walls, which determines the grain size and grain orientation

18、 in the final casting, in injection molding the high pressure during the injection of the melt produces shear forces that are the primary cause of the final molecular orientation in the material. The mechanical properties of the finished product are therefore affected by both the injection condition

19、s and the cooling conditions within the mold. Injection molding has been applied to thermoplastics and thermoses, foamed parts, and has been modified to yield the reaction injection molding (RIM) process, in which the two components of a thermosetting resin system are simultaneously injected and pol

20、ymerize rapidly within the mold. Most injection molding is however performed on thermoplastics, and the discussion that follows concentrates on such moldingsA typical injection molding cycle or sequence consists of five phases (see Fig. 2-1): (1) Injection or mold filling; (2) Packing or compression

21、;(3) Holding;(4) Cooling;(5) Part ejection Plastic pellets (or powder) are loaded into the feed hopper and through an opening in the injection cylinder where they are carried forward by the rotating screw. The rotation of the screw forces the pellets under high pressure against the heated walls of t

22、he cylinder causing them to melt. Heating temperatures range from 265 to 500. As the pressure builds up, the rotating screw is forced backward until enough plastic has accumulated to make the shot. The injection ram (or screw) forces molten plastic from the barrel, through the nozzle, sprue and runn

23、er system, and finally into the mold cavities. During injection, the mold cavity is filled volumetrically. When the plastic contacts the cold mold surfaces, it solidifies (freezes) rapidly to produce the skin layer. Since the core remains in the molten state, plastic flows through the core to comple

24、te mold filling. Typically, the cavity is filled to 95%98% during injection. Then the molding process is switched over to the packing phase. Even as the cavity is filled, the molten plastic begins to cool. Since the cooling plastic contracts or shrinks, it gives rise to defects such as sink marks, v

25、oids, and dimensional instabilities. To compensate for shrinkage, addition plastic is forced into the cavity. Once the cavity is packed, pressure applied to the melt prevents molten plastic inside the cavity from back flowing out through the gate. The pressure must be applied until the gate solidifi

26、es. The process can be divided into two steps (packing and holding) or may be encompassed in one step (holding or second stage). During packing, melt forced into the cavity by the packing pressure compensates for shrinkage. With holding, the pressure merely prevents back flow of the polymer melt. Af

27、ter the holding stage is completed, the cooling phase starts. During cooling, the part is held in the mold for specified period. The duration of the cooling phase depends primarily on the material properties and the part thickness. Typically, the part temperature must cool below the materials ejecti

28、on temperature. While cooling the part, the machine plasticates melt for the next cycle. The polymer is subjected to shearing action as well as the condition of the energy from the heater bands. Once the shot is made, plastication ceases. This should occur immediately before the end of the cooling p

29、hase. Then the mold opens and the part is ejected2.3.2 Injection Molds Molds for injection molding are as varied in design, degree of complexity, and size as are the parts produced from them. The functions of a mold for thermoplastics are basically to impart the desired shape to the plasticized poly

30、mer and then to cool the molded part. A mold is made up of two sets of components: (1) the cavities and cores, and (2) the base in which the cavities and cores are mounted. The size and weight of the molded parts limit the number of cavities in the mold and also determine the equipment capacity requ

31、ired. From consideration of the molding process, a mold has to be designed to safely absorb the forces of clamping, injection, and ejection. Also, the design of the gates and runners must allow for efficient flow and uniform filling of the mold cavities. Fig.2-2 illustrates the parts in a typical in

32、jection mold. The mold basically consists of two parts: a stationary half (cavity plate), on the side where molten polymer is injected, and a moving half (core plate) on the closing or ejector side of the injection molding equipment. The separating line between the two mold halves is called the parting line. The injected material is transferred through a central feed channel, called the sprue. The sprue is located on the sprue bushing and is tapered to facilitate release of the sprue m

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1