1、概率论与数理统计公式大全随机变量的数字特征(1)一维随机变量的数字特征离散型连续型期望期望就是平均值设X是离散型随机变量,其分布律为P( )pk,k=1,2,n,(要求绝对收敛)设X是连续型随机变量,其概率密度为f(x),(要求绝对收敛)函数的期望Y=g(X)Y=g(X)方差D(X)=EX-E(X)2,标准差,矩对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即k=E(Xk)= , k=1,2, .对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即= , k=1,2, .对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为
2、vk,即k=E(Xk)=k=1,2, .对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即=k=1,2, .切比雪夫不等式设随机变量X具有数学期望E(X)=,方差D(X)=2,则对于任意正数,有下列切比雪夫不等式切比雪夫不等式给出了在未知X的分布的情况下,对概率的一种估计,它在理论上有重要意义。(2)期望的性质(1) E(C)=C(2) E(CX)=CE(X)(3) E(X+Y)=E(X)+E(Y),(4) E(XY)=E(X) E(Y),充分条件:X和Y独立; 充要条件:X和Y不相关。(3)方差的性质(1) D(C)=0;E(C)=C(2) D(aX)=a2
3、D(X); E(aX)=aE(X)(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b(4) D(X)=E(X2)-E2(X)(5) D(XY)=D(X)+D(Y),充分条件:X和Y独立; 充要条件:X和Y不相关。 D(XY)=D(X)+D(Y) 2E(X-E(X)(Y-E(Y),无条件成立。而E(X+Y)=E(X)+E(Y),无条件成立。(4)常见分布的期望和方差期望方差0-1分布p二项分布np泊松分布几何分布超几何分布均匀分布指数分布正态分布n2nt分布0(n2)(5)二维随机变量的数字特征期望函数的期望方差协方差对于随机变量X与Y,称它们的二阶混合中心矩 为X与Y的协
4、方差或相关矩,记为 ,即与记号 相对应,X与Y的方差D(X)与D(Y)也可分别记为 与 。相关系数对于随机变量X与Y,如果D(X)0, D(Y)0,则称为X与Y的相关系数,记作 (有时可简记为 )。 | |1,当| |=1时,称X与Y完全相关:完全相关而当 时,称X与Y不相关。以下五个命题是等价的: ;cov(X,Y)=0;E(XY)=E(X)E(Y);D(X+Y)=D(X)+D(Y);D(X-Y)=D(X)+D(Y).协方差矩阵混合矩对于随机变量X与Y,如果有 存在,则称之为X与Y的k+l阶混合原点矩,记为;k+l阶混合中心矩记为:(6)协方差的性质(i) cov (X, Y)=cov (Y
5、, X);(ii) cov(aX,bY)=ab cov(X,Y);(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);(iv) cov(X,Y)=E(XY)-E(X)E(Y).(7)独立和不相关(i) 若随机变量X与Y相互独立,则 ;反之不真。(ii) 若(X,Y)N( ),则X与Y相互独立的充要条件是X和Y不相关。第五章 大数定律和中心极限定理(1)大数定律切比雪夫大数定律设随机变量X1,X2,相互独立,均具有有限方差,且被同一常数C所界:D(Xi)C(i=1,2,),则对于任意的正数,有 特殊情形:若X1,X2,具有相同的数学期望E(XI)=,则上式成为伯努利大
6、数定律设是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数,有 伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即这就以严格的数学形式描述了频率的稳定性。辛钦大数定律设X1,X2,Xn,是相互独立同分布的随机变量序列,且E(Xn)=,则对于任意的正数有(2)中心极限定理列维林德伯格定理设随机变量X1,X2,相互独立,服从同一分布,且具有相同的数学期望和方差:,则随机变量的分布函数Fn(x)对任意的实数x,有此定理也称为独立同分布的中心极限定理。棣莫弗拉普拉斯定理设随机变量 为具有参数n, p(0p1)的二项分布,则对于任意
7、实数x,有(3)二项定理若当 ,则超几何分布的极限分布为二项分布。(4)泊松定理若当 ,则其中k=0,1,2,n,。二项分布的极限分布为泊松分布。第六章 样本及抽样分布(1)数理统计的基本概念总体在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。个体总体中的每一个单元称为样品(或个体)。样本我们把从总体中抽取的部分样品称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时,表示n个随机变
8、量(样本);在具体的一次抽取之后, 表示n个具体的数值(样本值)。我们称之为样本的两重性。样本函数和统计量设 为总体的一个样本,称 ( )为样本函数,其中 为一个连续函数。如果 中不包含任何未知参数,则称 ( )为一个统计量。常见统计量及其性质样本均值样本方差样本标准差样本k阶原点矩样本k阶中心矩, , ,其中 ,为二阶中心矩。(2)正态总体下的四大分布正态分布设 为来自正态总体 的一个样本,则样本函数t分布设 为来自正态总体 的一个样本,则样本函数其中t(n-1)表示自由度为n-1的t分布。设 为来自正态总体 的一个样本,则样本函数其中 表示自由度为n-1的 分布。F分布设 为来自正态总体
9、的一个样本,而 为来自正态总体 的一个样本,则样本函数其中表示第一自由度为 ,第二自由度为 的F分布。(3)正态总体下分布的性质与 独立。第七章 参数估计(1)点估计矩估计设总体X的分布中包含有未知数 ,则其分布函数可以表成 它的k阶原点矩 中也包含了未知参数 ,即 。又设为总体X的n个样本值,其样本的k阶原点矩为这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有由上面的m个方程中,解出的m个未知参数 即为参数( )的矩估计量。若 为 的矩估计, 为连续函数,则 为 的矩估计。极大似然估计当总体X为连续型随机变量时,设其分布密度为 ,其中 为未知参数。又设 为总
10、体的一个样本,称为样本的似然函数,简记为Ln. 当总体X为离型随机变量时,设其分布律为 ,则称为样本的似然函数。 若似然函数 在处取到最大值,则称 分别为 的最大似然估计值,相应的统计量称为最大似然估计量。若 为 的极大似然估计, 为单调函数,则 为 的极大似然估计。(2)估计量的评选标准无偏性设 为未知参数 的估计量。若E ( )= ,则称 为 的无偏估计量。E( )=E(X), E(S2)=D(X)有效性设 和 是未知参数 的两个无偏估计量。若 ,则称 有效。一致性设 是 的一串估计量,如果对于任意的正数 ,都有则称 为 的一致估计量(或相合估计量)。若 为 的无偏估计,且 则 为 的一致
11、估计。只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。(3)区间估计置信区间和置信度设总体X含有一个待估的未知参数 。如果我们从样本 出发,找出两个统计量 与 ,使得区间 以 的概率包含这个待估参数 ,即那么称区间 为 的置信区间, 为该区间的置信度(或置信水平)。单正态总体的期望和方差的区间估计设 为总体 的一个样本,在置信度为 下,我们来确定 的置信区间 。具体步骤如下:(i)选择样本函数;(ii)由置信度 ,查表找分位数;(iii)导出置信区间 。已知方差,估计均值(i)选择样本函数(ii) 查表找分位数(iii)导出置信区间未知方差,估计均值(i
12、)选择样本函数 (ii)查表找分位数(iii)导出置信区间方差的区间估计(i)选择样本函数(ii)查表找分位数 (iii)导出的置信区间第八章 假设检验基本思想假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。 为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。 这里所说的小概率事件就是事件 ,其概率就是检验水平,通常我们取=0.05,有时也取0.01或0.10。基本步骤假设检验的基本步骤如下:(i) 提出零假设H0;(ii) 选择统计量K;(iii) 对于检验水平查表找分位数;(iv) 由样本值 计算统计量之值K;将 进行比较,作出判断:当时否定H0,否则认为H0相容。两类错误第一类错误当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设),称这种错误为“以真当假”的错误或第一类错误,记为犯此类错误的概率,即P否定H0|H0为真= ;此处的恰好为检验水平。第二类错误
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1