1、15整式第十五章 整式测试1 整式的乘法学习要求会进行整式的乘法计算课堂学习检测一、填空题1(1)单项式相乘,把它们的_分别相乘,对于只在一个单项式里含有的字母,则_(2)单项式与多项式相乘,就是用单项式去乘_,再把所得的积_(3)多项式与多项式相乘,先用_乘以_,再把所得的积_2直接写出结果:(1)5y(4xy2)_;(2)(x2y)3(3xy2z)_;(3)(2a2b)(ab2a2ba2)_;(4)_;(5)(3ab)(a2b)_;(6)(x5)(x1)_二、选择题3下列算式中正确的是( )A3a32a26a6 B2x34x58x8C3x3x49x4 D5y75y310y104(10)(0
2、.3102)(0.4105)等于( )A1.2108 B0.12107C1.2107 D0.121085下面计算正确的是( )A(2ab)(2ab)2a2b2B(ab)(ab)a2b2C(a3b)(3ab)3a210ab3b2D(ab)(a2abb2)a3b36已知abm,ab4,化简(a2)(b2)的结果是( )A6 B2m8C2m D2m三、计算题7 84(ab)m13(ab)2m92(a2b2ab1)3ab(1ab) 102a2a(2a5b)b(5ab)11(x)2(2x2y)32x2(x6y31) 12 13(0.1m0.2n)(0.3m0.4n) 14(x2xyy2)(xy)四、解答
3、题15先化简,再求值(1)其中m1,n2;(2)(3a1)(2a3)(4a5)(a4),其中a2.16小明同学在长acm,宽的纸上作画,他在纸的四周各留了2cm的空白,求小明同学作的画所占的面积综合、运用、诊断一、填空题17直接写出结果:(1)_;(2)2(x)2y2(3xmyn)_;(3)(x2ym)2(xy)3_;(4)(a3a3a3)2_;(5)(xa)(xb)_;(6)_;(7)(2y)3(4x2y2xy2)_;(8)(4xy22x2y)(3xy)2_二、选择题18下列各题中,计算正确的是( )A(m3)2(n2)3m6n6 B(m3)2(n2)33m18n18C(m2n)2(mn2)
4、3m9n8 D(m2n)3(mn2)3m9n919若(8106)(5102)(210)M10a,则M、a的值为( )AM8,a8 BM8,a10CM2,a9 DM5,a1020设M(x3)(x7),N(x2)(x8),则M与N的关系为( )AMN BMN CMN D不能确定21如果x2与2y2的和为m,1y2与2x2的差为n,那么2m4n化简后的结果为( )A6x28y24 B10x28y24C6x28y24 D10x28y2422如图,用代数式表示阴影部分面积为( )Aacbc Bac(bc)Cac(bc)c Dab2c(ac)(bc)三、计算题23(2x3y2)2(1.5x2y3)2 24
5、 254a3a3(42a)8 26 四、解答题27在(x2axb)(2x23x1)的积中,x3项的系数是5,x2项的系数是6,求a、b的值拓展、探究、思考28通过对代数式进行适当变形求出代数式的值(1)若2xy0,求4x32xy(xy)y3的值;(2)若m2m10,求m32m22008的值29若x2m1,y34m,请用含x的代数式表示y测试2 乘法公式学习要求会用平方差公式、完全平方公式进行计算,巩固乘法公式的使用课堂学习检测一、填空题1计算题:(yx)(xy)_;(xy)(yx)_;(xy)(xy)_;(yx)(xy)_;2直接写出结果:(1)(2x5y)(2x5y)_; (2)(xab)(
6、xab)_;(3)(12b2)(b212)_; (4)(ambn)(bnam)_;(5)(3m2n)2_; (6)_;(7)( )m28m16; (8)_;3在括号中填上适当的整式:(1)(mn)( )n2m2; (2)(13x)( )19x24多项式x28xk是一个完全平方式,则k_5 _二、选择题6下列各多项式相乘,可以用平方差公式的有( )(2ab5x)(5x2ab) (axy)(axy)(abc)(abc) (mn)(mn)A4个 B3个 C2个 D1个7下列计算正确的是( )A(5m)(5m)m225 B(13m)(13m)13m2C(43n)(43n)9n216 D(2abn)(2
7、abn)2a2b2n28下列等式能够成立的是( )A(ab)2(ab)2 B(xy)2x2y2C(mn)2(nm)2 D(xy)(xy)(xy)(xy)9若9x24y2(3x2y)2M,则 M为( )A6xy B6xyC12xy D12xy10如图21所示的图形面积由以下哪个公式表示( )Aa2b2a(ab)b(ab)B(ab)2a22abb2C(ab)2a22abb2Da2b2a(ab)b(ab)图21三、计算题11(xn2)(xn2) 12(3x0.5)(0.53x)13 14 15(3mn5ab)2 16(4x37y2)2 17(5a2b4)2四、解答题18用适当的方法计算(1)1.02
8、 0.98 (2)(3) (4)20052401020062006219若ab17,ab60,求(ab)2和a2b2的值综合、运用、诊断一、填空题20(a2b3c)(a2b3c)(_)2(_)2;(5a2b2)(_)4b425a221x2_25(x_)2; x210x_(_5)2;x2x_(x_)2; 4x2_9(_3)222若x22ax16是一个完全平方式,是a_二、选择题23下列各式中,能使用平方差公式的是( )A(x2y2)(y2x2)B(0.5m20.2n3)(0.5m20.2n3)C(2x3y)(2x3y)D(4x3y)(3y4x)24下列等式不能恒成立的是( )A(3xy)29x2
9、6xyy2B(abc)2(cab)2C(0.5mn)20.25m2mnn2D(xy)(xy)(x2y2)x4y425若则的结果是( )A23 B8 C8 D2326(a3)(a29)(a3)的计算结果是( )Aa481 Ba481 Ca481 D81a4三、计算题27(x1)(x21)(x1)(x41) 28(2a3b)(4a5b)(2a3b)(4a5b)29(y3)22(y2)(y2)30(x2y)22(x2y)(x2y)(x2y)2四、计算题31当a1,b2时,求的值拓展、探究、思考32巧算: 33计算:(abc)234若a4b4a2b25,ab2,求a2b2的值35若x22x10y26y
10、0,求(2xy)2的值36若ABC三边a、b、c满足a2b2c2abbcca试问ABC的三边有何关系?测试3 整式的除法学习要求1会进行单项式除以单项式的计算2会进行多项式除以单项式的计算课堂学习检测一、判断题1x3nxnx3 ( ) 2 ( )32642162512 ( ) 4(3ab2)33ab39a3b3 ( )二、填空题5直接写出结果:(1)(28b314b221b)7b_;(2)(6x4y38x3y29x2y)(2xy)_;(3)_6已知A是关于x的四次多项式,且AxB,那么B是关于x的_次多项式三、选择题725a3b25(ab)2的结果是( )Aa B5a C5a2b D5a28已
11、知7x5y3与一个多项式之积是28x7y398x6y521x5y5,则这个多项式是( )A4x23y2 B4x2y3xy2C4x23y214xy2 D4x23y27xy3四、计算题9 10 11 12 13 142m(7n3m3)228m7n321m5n3(7m5n3)五、解答题15先化简,再求值:5a4a2(3a6)2(a2)3(2a2)2,其中a516已知长方形的长是a5,面积是(a3)(a5),求它的周长17月球质量约5.3511022千克,地球质量约5.9771024千克,问地球质量约是月球质量的多少倍?(结果保留整数)综合、运用、诊断一、填空题18直接写出结果:(1)(a2)3a2(
12、a2)(a2)_(2)_19若m(ab)3(a2b2)3,那么整式m_二、选择题20的结果是( )A8xyz B8xyz C2xyz D8xy2z221下列计算中错误的是( )A4a5b3c2(2a2bc)2ab B(24a2b3)(3a2b)2a16ab2C D 22当时,代数式(28a328a27a)7a的值是( )A B C D4三、计算题237m2(4m3p4)7m5p 24(2a2)3(a)42a825 26xmn(3xnyn)(2xnyn)27 28 29(mn)(mn)(mn)22n(mn)4n30 四、解答题31求时,(3x2y7xy2)6xy(15x210x)10x(9y23
13、y)(3y)的值32若求m、n的值拓展、探究、思考33已知x25x10,求的值34已知x3m,x5n,试用m、n的代数式表示x1435已知除式xy,商式xy,余式为1,求被除式测试4 提公因式法学习要求能够用提公因式法把多项式进行因式分解一、填空题1因式分解是把一个_化为_的形式2ax、ay、ax的公因式是_;6mn2、2m2n3、4mn的公因式是_3因式分解a3a2b_二、选择题4下列各式变形中,是因式分解的是( )Aa22abb21(ab)21 C(x2)(x2)x24 Dx41(x21)(x1)(x1)5将多项式6x3y2 3x2y212x2y3分解因式时,应提取的公因式是( )A3xy
14、 B3x2y C3x2y2 D3x3y36多项式ana3nan2分解因式的结果是( )Aan(1a3a2) Ban(a2na2)Can(1a2na2) Dan(a3an)三、计算题7x4x3y 812ab6b95x2y10xy215xy 103x(mn)2(mn)113(x3)26(3x) 12y2(2x1)y(2x1)213y(xy)2(yx)3 14a2b(ab)3ab(ab)152x2n4x n 16x(ab)2nxy(ba)2n1四、解答题17应用简便方法计算:(1)2012201 (2)4.3199.87.6199.81.9199.8(3)说明320043199103198能被7整除
15、综合、运用、诊断一、填空题18把下列各式因式分解:(1)16a2b8ab_;(2)x3(xy)2x2(yx)2_19在空白处填出适当的式子:(1)x(y1)( )(y1)(x1);(2)( )(2a3bc)二、选择题20下列各式中,分解因式正确的是( )A3x2y26xy23xy2(x2y)B(mn)32x(nm)3(mn)(12x)C2(ab)2(ba)(ab)(2a2b)Dam3bm2mm(am2bm1)21如果多项式x2mxn可因式分解为(x1)(x2),则m、n的值为( )Am1,n2 Bm1,n2Cm1,n2 Dm1,n222(2)10(2)11等于( )A210 B211 C210
16、 D2三、解答题23已知x,y满足求7y(x3y)22(3yx)3的值24已知xy2,求x(xy)2(1y)x(yx)2的值拓展、探究、思考25因式分解:(1)axaybxby; (2)2ax3am10bx15bm测试5 公式法(1)学习要求能运用平方差公式把简单的多项式进行因式分解课堂学习检测一、填空题1在括号内写出适当的式子:(1)0.25m4( )2;(2)( )2;(3)121a2b6( )22因式分解:(1)x2y2( )( ); (2)m216( )( );(3)49a24( )( );(4)2b22_( )( )二、选择题3下列各式中,不能用平方差公式分解因式的是( )Ay249
17、x2 B Cm4n2 D 4a2(bc)2有一个因式是abc,则另一个因式为( )Aabc Babc Cabc Dabc5下列因式分解错误的是( )A116a2(14a)(14a)Bx3xx(x21)Ca2b2c2(abc)(abc)D 三、把下列各式因式分解6x225 74a29b28(ab)264 9m481n41012a63a2b2 11(2a3b)2(ba)2四、解答题12利用公式简算:(1)20082008220092;(2)3.145123.1449213已知x2y3,x24y215,(1)求x2y的值;(2)求x和y的值综合、运用、诊断一、填空题14因式分解下列各式:(1)_;
18、(2)x416_;(3)_; (4)x(x21)x21_二、选择题15把(3m2n)2(3m2n)2分解因式,结果是( )A0 B16n2 C36m2 D24mn16下列因式分解正确的是( )Aa29b2(2a3b)(2a3b)Ba581ab4a(a29b2)(a29b2)C Dx24y23x6y(x2y)(x2y3)三、把下列各式因式分解17a3ab2 18m2(xy)n2(yx)1922m4 203(xy)22721a2(b1)b2b3 22(3m2n2)2(m23n2)2四、解答题23已知求(xy)2(xy)2的值拓展、探究、思考24分别根据所给条件求出自然数x和y的值:(1)x、y满足
19、x2xy35;(2)x、y满足x2y245测试6 公式法(2)学习要求能运用完全平方公式把多项式进行因式分解课堂学习检测一、填空题1在括号中填入适当的式子,使等式成立:(1)x26x( )( )2;(2)x2( )4y2( )2;(3)a25a( )( )2;(4)4m212mn( )( )22若4x2mxy25y2(2x5y)2,则m_二、选择题3将a224a144因式分解,结果为( )A(a18)(a8) B(a12)(a12)C(a12)2 D(a12)24下列各式中,能用完全平方公式分解因式的有( )9a21; x24x4; m24mnn2; a2b22ab; (xy)26z(xy)9
20、z2A2个 B3个 C4个 D5个5下列因式分解正确的是( )A4(mn)24(mn)1(2m2n1)2B18x9x299(x1)2C4(mn)24(nm)1(2m2n1)2Da22abb2(ab)2三、把下列各式因式分解6a216a64 7x24y24xy8(ab)22(ab)(ab)(ab)2 94x34x2x10计算:(1)2972 (2)10.32四、解答题11若a22a1b26b90,求a2b2的值综合、运用、诊断一、填空题12把下列各式因式分解:(1)49x214xyy2_;(2)25(pq)210(pq)1_;(3)an1an12an_;(4)(a1)(a5)4_二、选择题13如
21、果x2kxy9y2是一个完全平方公式,那么k是( )A6 B6 C6 D1814如果a2ab4m是一个完全平方公式,那么m是( )A B C D 15如果x22axb是一个完全平方公式,那么a与b满足的关系是( )Aba Ba2b Cb2a Dba2三、把下列各式因式分解16x(x4)4 172mx24mxy2my218x3y2x2y2xy3 19 四、解答题20若求的值21若a4b4a2b25,ab2,求a2b2的值拓展、探究、思考22(m2n2)24m2n2 23x22x1y224(a1)2(2a3)2(a1)(32a)2a325x22xyy22x2y126已知x3y3(xy)(x2xyy
22、2)称为立方和公式,x3y3(xy)(x2xyy2)称为立方差公式,据此,试将下列各式因式分解:(1)a38 (2)27a31测试7 十字相乘法学习要求能运用公式x2(ab)xab(xa)(xb)把多项式进行因式分解课堂学习检测一、填空题1将下列各式因式分解:(1)x25x6_; (2)x25x6_;(3)x25x6_; (4)x25x6_;(5)x22x8_; (6)x214xy32y2_二、选择题2将a210a16因式分解,结果是( )A(a2)(a8) B(a2)(a8)C(a2)(a8) D(a2)(a8)3因式分解的结果是(x3)(x4)的多项式是( )Ax27x12 Bx27x12
23、Cx27x12 Dx27x124如果x2pxq(xa)(xb),那么p等于( )Aab BabCab Dab5若x2kx36(x12)(x3),则k的值为( )A9 B15C15 D9三、把下列各式因式分解6m212m20 7x2xy6y28103aa2 9x210xy9y210(x1)(x4)36 11ma218ma40m12x35x2y24xy2四、解答题13已知xy0,x3y1,求3x212xy13y2的值综合、探究、检测一、填空题14若m213m36(ma)(mb),贝ab_15因式分解x(x20)64_二、选择题16多项式x23xyay2可分解为(x5y)(xby),则a、b的值为( )Aa10,b2 Ba10,b2Ca10,b2 Da10,b217若x2(ab)xabx2x
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1