ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:20.99KB ,
资源ID:5661849      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5661849.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(运用学习分析技术促进网络教育平台发展.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

运用学习分析技术促进网络教育平台发展.docx

1、运用学习分析技术促进网络教育平台发展运用学习分析技术促进网络教育平台发展摘要:网络教育平台长期运行过程中,积累了大量的系统化、结构化的数据,可以利用学习分析技术充分挖掘这些数据。从数据面板、预测分析和自适应学习分析等3种功能类型分别举例,说明了学习分析技术如何促进网络教育平台发展。关键词:学习分析技术;网络教育平台;数据挖据0引言网络教育是在网络环境下,以现代教育思想和学习理论为指导,充分发挥网络的各种教育功能和丰富的网络教育资源优势,向受教育者和学习者提供一种网络教和学的环境,传递数字化内容,开展以学习者为中心的非面授教育活动。1网络教育作为继信件、收音机、电视和计算机之后的第五代远程教育,

2、自1998年教育部开展现代远程教育试点工作以来得到了迅速发展。据教育部统计数据,2010年网络高等教育本、专科招生人数达166万人,在校学生人数达453万人2。实施网络教育的关键是创设能够促进学习者主动学习的网络环境,而学习者在网络教学环境中的学习活动离不开网络教育平台。网络教育平台作为支持网上教学与学习活动的软件系统,它的发展经历了3个主要阶段:第一阶段:内容管理系统(CMS),主要用来存储和管理教学资源,方便学生自主选择网络资源学习;第二阶段:学习管理系统(LMS),主要用于存储、管理、跟踪、报告和传送网络教育课程,与CMS系统相比,LMS系统可以跟踪学生表现,存储学生的作业,让学生与教师

3、沟通;3第三阶段:学习内容管理系统(LCMS),与LMS系统相比,LCMS系统提供了多用户环境,系统管理者、教学设计人员、项目专家可以在数据库内创造、存储、重复利用、管理和传输数字化学习内容。LCMS专注于课程的开发、管理和发布,而这又需要通过LMS来传送。尽管从定义上来说LMS和LCMS有区别,但LMS通常用来同时表示LMS和LCMS,Blackboard公司就把他们的Blackboard学习平台称作是一个LMS平台。国外对于网络教育平台还有很多不同说法,如虚拟学习环境(VLE)、管理学习环境(MLEs)、个人学习环境(PLE)、学习平台(LP)等等。网络教育平台为网络教育的快速发展提供了有

4、力支撑,也为大量学习者提供了帮助。随着网络教育平台的多年使用,在此过程中积累了大量的系统化、结构化的学习结果和学习行为数据。为了利用这些数据,教育界最初采用了教育数据挖掘(EDM)技术,应用数据挖掘方法将来自于教育平台的数据提取出有意义的信息,利用这些信息为教育者、学习者、管理者、教育软件开发者和教育研究者等提供服务。4而后随着引入一些原本属于社会科学领域的语义分析法、内容分析法、社会网络分析法的使用,形成了一个新的概念:学习分析。相对于教育数据挖掘服务的主要对象是政府机构和管理人员,学习分析主要针对的是学习者和教师。学习分析使用学习者产生的数据,建立分析模型以发现社会关系和有用的信息,用以预

5、测学习情况并对学习者提供建议。在首届“学习分析和知识(LAK)国际会议”上,与会者对学习分析做出定义:学习分析技术是测量、收集、分析和报告有关学生及其学习环境的数据,用以理解和优化产生的环境的技术。5由于网络教育平台已经积累大量数据,我们把学习分析技术应用到网络教育平台将大有可为。在把握学习者的主要特征、网络学习行为的特点、监控学习过程、了解学习行为的影响因素、干预学习进程、保障教育质量等方面,学习分析技术都能够提供帮助。1学习分析技术背景在学习分析概念形成之前,相关方法、技术和工具都已经发展起来了。学习分析从一系列研究领域汲取技术,如数据统计、商业智能(Business Intelligen

6、ce)、网页分析(Web Analytics)、运筹学(Operational Research)、人工智能(AI)、教育数据挖掘(EDM)、社会网络分析、信息可视化等。数据统计历来作为一个行之有效的手段用来解决假设检验问题。商业智能以数据仓库、联机分析处理、数据挖掘等技术为基础,从不同的数据源中提取数据,将之转换成有用的信息,它与学习分析有相似之处,但它历来被定位于通过可能的数据访问和绩效指标总结使生产更高效。网页分析工具如google analytics通过网页访问量,与互联网网站、品牌等的关联做出报告,这些技术可以用来分析学生的学习资源(课程,材料等)以追踪学生的学习轨迹。运筹学通过设计

7、优化数学模型和统计方法使目标最优化。人工智能和数据挖掘中的机器学习技术建立在数据挖掘和人工智能方法上,它能够检测数据中的模式。在学习分析中的类似技术可用于智能教学系统,以更加动态的方式对学生进行分类而不是简单地进行人口统计分类,可以通过协同过滤技术对特定的资源建立模型。社会网络分析可以分析出隐含的人与人(如在论坛上的互动)和外显的人与人(如朋友或者关注对象)之间的关系,在学习分析中可用于探索网络集群、影响力网络、参与及不参与状况。信息可视化是很多分析的重要一步(包括上面列出的那些分析方法),它可以用来对所提供的数据进行意义建构,John Tukey1977年在他的探索性数据分析一书中给我们介绍

8、了如何更好地利用信息可视化,Tukey强调使用可视化的价值在于帮助在形成正式的假设之前做检验。6以上这些学习分析技术都可以对大量数据进行分析和处理,形成分析报告为教育提供帮助。学习分析技术的特点在于能够为网络教育平台提供实时数据,通过利用这些实时数据,可以为教师、学生和教育管理人员提供帮助:为个人学习者提供成绩反馈及与他人沟通的行为模式;为预测学习者提供支持与关注;为教师和助理人员提供支持个人与集体的干涉计划;为如课程小组这样的组织改善现有课程或开发新的课程提供帮助;(5)为机构管理者在营销、招聘和效率等方面做决定时提供有效措施。72学习分析方法发展中的学习分析技术吸纳了许多其它领域的关键技术

9、,以实现对学习过程的研究,下面介绍一些常用方法。2.1社会网络分析法社会网络分析法(SNA)可用于测绘和测量人、团体、组织、计算机、网址以及其它相互关联的信息知识试题之间的关系。网络中的节点是人和团体,它们之间的链接则显示了节点之间的关系或者流量。社会网络分析为人类关系提供可视化的数学分析。网络教育平台管理者可以用它来分析学习者之间的联系、关系、角色以及关系网络形成的过程与特点,从而帮助学习者建立自己的关系网络以支持自己的学习。SNAPP软件就可以通过论坛内的回复和跟帖状况分析学习者交互情况,并得到可视化的图标。2.2影响力与消极性测量法影响力与消极性测量法(Influence and pas

10、sivity measure)通过测量传递、引用或者转发的次数,评估人和信息的影响力。网络教育平台可以对学习者个体的影响力进行测量,分析了解为什么某些个体能够获得高影响力,低影响力学习者应该如何改进。2.3性格分析法性格分析法(Disposition Analytics)旨在获得学生性格与他们学习情况的数据,以及两者之间的关系。好奇的学生可能更倾向于提问,学习分析可以对获得的这些数据进行分析。2.4行为信任分析法行为信任分析法(Behavioral trust analysis)使用人们谈吐和交流中的信息(在人交流和使用信息的过程中将产生新的信息)作为信任关系的一个指标。网络教育平台可用来对人

11、际关系进行分析。2.5内容分析法内容分析法(Content Analytics)可以对学习者的学习过程数据进行定量分析,寻找学习者的行为模式;还可以进行定性分析,运用已积累的数据经验来预测当前的学习行为。网络教育平台可以对学习者的学习行为分析,找到优生和差生学习行为的差别,教师结合自己的教学经验有针对性地干涉。由于网络教育平台数据的实时性,可以根据学习者的学习行为实时进行干涉,当然干涉的准确性需要数据库的进一步积累,从而产生由量变到质变的效果。LOCO-Analyst软件就可以对网络教育平台的内容进行分析。2.6话语分析法话语分析法(Discourse analytics)的目的在于获得有意义

12、的数据(不像社会网络分析),旨在探讨所使用语言的属性,而不只是网络上的互动,或者论坛帖子数量的统计。网络教育平台可用以探究知识构建的过程,从而使教师和教学研究者对学习发生的过程有更清晰的认识。2.7社会学习分析法社会学习分析法(Social Learning Analytics)的目的在于探索在学习过程中社会交互所扮演的角色,以及学习网络的重要性,话语如何用来意义建构。网络教育平台管理者可以用来构建一个更好的学习者网络,通过学习者之间的交互,达到相互帮助学习的目的,相互帮助实现知识结构构建。2.8信息可视化方法信息可视化(Information Visualization)可以避免我们在一堆枯

13、燥的数据中寻找规律,数据可视化之后,我们可以更好地进行意义建构。BEESTAR Insight可以自动收集学生实时的参与数据,从而为教师、学生和管理者提供分析图改善学习。网络教育平台上的学习是学生、教师和管理者之间的共同交互过程,应运用不同的方法对这一复杂过程进行研究,才能得到满意的结果,学习分析技术将在此过程中展现它的作用。3学习分析技术促进网络教育平台发展笔者将从数据面板、预测性分析和自适应学习分析分别举例说明学习分析技术为网络教育平台带来哪些帮助。3.1学习管理系统分析面板(LMS Analytics Dashboards)大多数网络学习平台上都开始使用学习分析数据面板。实际上,到目前为

14、止,大部分的非专业人员都还不能对记录数据进行解读,但是通过一系列的图像、表格和其它的可视化工具生成的报告,学生、教师和管理人员都可以读懂。美国一些大学采用了更先进的综合数据系统(如Helpdesk calls;学生信息系统),当然这些功能强大的系统也更难以学懂,这些系统能够探索不同变量之间的关系,使用户不仅止于掌握预先的报告。学习者在测验分数、论坛贡献、参与情况方面,可以得到一些基本分析报告。EDUCAUSE汇集了一系列有用的高等教育案例,例如亚利桑那州立大学的研究表明,在学术和学习分析上进行投资能够收到显著的回报,该大学做了一个“Student 360”项目,通过该项目学校可以了解该校每一名

15、学生的状况。83.2预测性分析(Predictive Analytics)这是学习分析的一种高级应用。通过对学习者的统计数据或者过去的成绩之类的静态数据,和在线登陆方式、讨论发帖量之类的动态数据进行分析,追踪分析学习者的类型。把学习者进行分类,例如该学习者属于“高成就”,或者该生目前比较“危险”,或者是“社会型学习者”。然后根据学习者的类型进行实时的干预,对“高成就”类型提供一些更具挑战性的学习任务,而对处于“危险”状况的学生,教师则需要特别关注,给予一些学习上的帮助,而对于“社会型”的学生,则可能需要给予社交上的支持。目前对于期末考试成绩最可靠的预测,是在学习开始的时候做一个小的学习能力测验

16、。如果想设计更复杂的数据驱动预测模型,必须在此基础上进行改进,而这需要进一步的数据分析,以确定哪些变量能够预测“成功”。Purdue大学的Course Signal software非常知名,已经部分实现了这一技术。Signals在学生的学习过程提供了红色、黄色、绿色等信号,以帮助教师和学生了解目前的学习状况。最近的评估报告表明,参与Course Signal项目的学生获得了更高的平均分,能够更快速地寻找帮助资源。9来自密歇根大学的报告显示,自适应干预技术能够帮助参与E2Coach infrastructure项目的物理系学生学习健康信息,给他们提供定制的反馈,并鼓励学生改变他们的学习策略。3

17、.3自适应学习分析(Adaptive Learning Analytics)自适应学习平台建立了一个学习某个主题(如代数;光合作用)的模型,并在标准化测试背景下建立了课程测试的模型。这种平台能够提供更细致的反馈(例如你已经掌握了哪些概念并掌握到何种程度),据此自动呈现以后的学习内容(例如不呈现基于学习者所未掌握概念的材料)。当然,建立学习者认知的动态模型,和准备自适应学习内容的引擎比设计和实现传统的学习平台需要更多的资源。大量的研究证据表明,采用这种方法将使个性化学习成为可能。在智能教学系统和自适应平台上大量的研究和资金投入,将会为网络教育平台带来更好的用户体验。卡内基-梅隆大学的Open L

18、earning Initiative课程是免费的,大家可以去体验一下,而Grockit与Knewton公司的商业平台也做得很好。4结语国外的大量实践表明,学习分析技术越来越显示出它的重要性。基于学习分析技术巨大的发展潜力,也希望更多的公司和机构投入到这个领域,毕竟学习分析技术还处于发展应用的初期阶段。而学习分析技术支持下的网络教育平台,将为我国远程教育发展带来新的机遇。参考文献参考文献:1程智.对网络教育概念的探讨J.电化教育研究,2003(7):25-28.2魏顺平.学习分析技术:挖掘大数据时代下教育数据的价值J.现代教育技术,2013(2):5-11.3WATSON,WILLIAM R.A

19、n argument for clarity:what are learning management systems,what are they not, and what should they becomeJ.TechTrends,2013(2):2834.4Educational Data Mining.http:/www.educationaldatamining.org.5COOPER,ADAM.A brief history of analytics a briefing paper.http:/publications.cetis.ac.uk/wp-content/upload

20、s/2012/12/Analytics-Brief-History-Vol-1-No9.pdf.6POWELL,STEPHEN,SHIELA.MACNEIL.Instituitional readiness for analytics a briefing paper.http:/publications.cetis.ac.uk/wp-content/uploads/2012/12/Institutional-Readiness-for-Analytics-Vol1-No8.pdf.7CROW M M.No More Excuses. EDUCAUSE Review Online.http:/www.educause. edu/ero/article/ no-more-excuses-michael-m-crow-analytics.8PISTILLI M D,ARNOLD K,BETHUNE M.Signals:using academic analytics to promote student success.http:/www.educause.edu/ero/article/signals-using-academic-analytics-promote-student-success.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1