ImageVerifierCode 换一换
格式:DOCX , 页数:62 ,大小:267.02KB ,
资源ID:5649169      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5649169.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(R多元统计分析上机讲义全.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

R多元统计分析上机讲义全.docx

1、R多元统计分析上机讲义全应用多元统计分析应用多元统计分析Applied Multivariate Statistical Analysis第一章 绪论在实际问题中,很多随机现象涉及到的变量不是一个,而是经常是多个变量,并且这些变量间又存在一定的联系。我们经常需要处理多个变量的观测数据,如果用一元统计方法,由于忽视了各个变量之间可能存在的相关性,一般说来,丢失信息太多,分析的结果不能客观全面反映数据所包含的容,因此,我们就需要用到多元统计的方法。多元统计分析(Multivariate Statistical Analysis)也称多变量统计分析、多因素统计分析或多元分析,是研究客观事物中多变量(

2、多因素或多指标)之间的相互关系和多样品对象之间差异以及以多个变量为代表的多元随机变量之间的依赖和差异的现代统计分析理论和方法。多元统计分析是解决实际问题的有效的数据处理方法。随着电子计算机使用的日益普及,多元统计统计方法已广泛地应用于自然科学、社会科学的各个方面。第二章 矩阵 矩阵即是二维的数组,它非常的重要,以至于需要单独讨论。由于矩阵应用非常广泛,因此对它定义了一些特殊的应用和操作,R 包括许多只对矩阵操作的操作符和函数。2.1矩阵的建立在R中最为常用的是用命令matrix( )建立矩阵,而对角矩阵常用函数diag( )建立。例如 X X ,1 ,21, 1 12, 1 1 X X ,1

3、,2 ,31, 1 0 02, 0 1 03, 0 0 1 diag(2.5, nr = 3, nc = 5) ,1 ,2 ,3 ,4 ,51, 2.5 0.0 0.0 0 02, 0.0 2.5 0.0 0 03, 0.0 0.0 2.5 0 0 X - matrix(1:4, 2) # 等价于X X ,1 ,21, 1 32, 2 4 rownames(X) colnames(X) X c da 1 3b 2 4 dim(X)1 2 2 dimnames(X)11 a b21 c d注意:循环准则仍然适用于matrix( ),但要求数据项的个数等于矩阵的列数的倍数, 否则会出现警告。矩阵的

4、维数使用c( )会得到不同的结果(除非是方阵), 因此需要小心。数据项填充矩阵的方向可通过参数byrow来指定, 其缺省是按列填充的(byrow=FALSE), byrow=TRUE表示按行填充数据。再看几个例子: X X ,1 ,2 ,3 ,41, 1 3 1 32, 2 4 2 4 X X X ,1 ,21, 1 32, 2 4 X X ,1 ,2 ,3 ,41, 1 2 3 42, 1 2 3 4 因为矩阵是数组的特例,R中数组由函数array( )建立, 因此矩阵也可以用函数array( )来建立,其一般格式为: array(data, dim, dimnames)其中data为一向量

5、,其元素用于构建数组;dim为数组的维数向量(为数值型向量);dimnames为由各维的名称构成的向量(为字符型向量), 缺省为空。看几个例子: A A ,1 ,2 ,31, 1 3 52, 2 4 6 A A ,1 ,2 ,31, 1 3 12, 2 4 2 A A ,1 ,2 ,31, 1 3 52, 2 4 62.2矩阵的下标(index)与子集(元素)的提取矩阵的下标可以使用正整数、负整数和逻辑表达式,从而实现子集的提取或修改。考查矩阵 x x ,1 ,2 ,31, 1 3 52, 2 4 6 提取一个元素 x2,21 4 提取若一个或若干个行或列 x2,21 4 x2,1 2 4 6

6、 x,21 3 4 x,2,drop=FALSE ,11, 32, 4 x,c(2,3),drop=FALSE ,1 ,21, 3 52, 4 6 去掉某一个或若干个行与列 x-1,1 2 4 6 x,-2 ,1 ,21, 1 52, 2 6 添加与替换元素 x,3 x ,1 ,2 ,31, 1 3 NA2, 2 4 NA xis.na(x) x ,1 ,2 ,31, 1 3 12, 2 4 12.3 矩阵四则运算矩阵也可以进行四则运算(“+”、“-”、“*”、“/”,“”),分别解释为矩阵对应元素的四则运算。在实际应用中,比较有实际应用的是矩阵的相加,相减,相乘和矩阵的求逆。矩阵的加减运算一

7、般要求矩阵形状完全相同(dim属性完全相同),矩阵的相乘一般要求一矩阵的列维数与另一矩阵的行维数相同,而矩阵要求逆的话,一般要求它为一方阵。2.3.1 矩阵的加减运算若A,B为两个形状相同的矩阵,两矩阵的和为C,R中表达式为:C-A+B两矩阵的差为D,R中表达式为:D-A-B矩阵也可以与数进行加减,A+5表示A中的每个元素加上5。2.3.2 矩阵的相乘操作符%*% 用于矩阵相乘。若矩阵A的列数等于矩阵B的行数,矩阵A乘以矩阵B表示为:A%*%B注:X*Y表示两个矩阵的逐元相乘,而不是X和Y的乘积。2.3.3 矩阵的求逆若矩阵A为一方阵,矩阵的逆可以用下面的命令计算:solve(A)。操作符so

8、lve( )可以用来求解线性方程组:Ax=b,解为solve(A,b)在数学上,用直接求逆的办法解x X diag(X)1 1 4事实上,diag( )的作用依赖于自变量,diag(vector)返回以自变量(向量)为主对角元素的对角矩阵;diag(matrix)返回由矩阵的主对角元素所组成的向量;diag(k)(k为标量)返回k阶单位阵。2.4.3矩阵的合并与拉直函数cbind()把几个矩阵横向拼成一个大矩阵,这些矩阵行数应该相同;函数rbind()把几个矩阵列向拼成一个大矩阵,这些矩阵列数应该相同。(如果参与合并的矩阵比其它矩阵行数少或列数少,则循环不足后合并。)例如: m1 m1 ,1

9、,21, 1 12, 1 1 m2 m2 ,1 ,21, 2 22, 2 2 rbind(m1, m2) ,1 ,21, 1 12, 1 13, 2 24, 2 2 cbind(m1, m2) ,1 ,2 ,3 ,41, 1 1 2 22, 1 1 2 22.4.4方阵的行列式求方阵的行列式使用det( ):X X ,1 ,21, 1 32, 2 4 det(X)1 -22.4.5 矩阵的特征根和特征向量 函数eigen( ) 用来计算矩阵的特征值和特征向量。这个函数的返回值是一个含有values 和vectors 两个分量的列表。命令A A$values1 5.3722813 -0.3722

10、813$vectors ,1 ,21, -0.5657675 -0.90937672, -0.8245648 0.41597362.4.6 Matrix facilites In the following examples, A and B are matrices and x and b are a vectors.Operator or FunctionDescriptionA * BElement-wise multiplicationA %*% BMatrix multiplicationA %o% BOuter product. ABcrossprod(A,B)crossprod(

11、A)AB and AA respectively.t(A)Transposediag(x)Creates diagonal matrix with elements of x in the principal diagonaldiag(A)Returns a vector containing the elements of the principal diagonaldiag(k)If k is a scalar, this creates a k x k identity matrix. Go figure.solve(A, b)Returns vector x in the equati

12、on b = Ax (i.e., A-1b)solve(A)Inverse of A where A is a square matrix.ginv(A)Moore-Penrose Generalized Inverse of A. ginv(A) requires loading the MASS package.y-eigen(A)y$val are the eigenvalues of Ay$vec are the eigenvectors of Ay-svd(A)Single value decomposition of A.y$d = vector containing the si

13、ngular values of Ay$u = matrix with columns contain the left singular vectors of A y$v = matrix with columns contain the right singular vectors of AR - chol(A)Choleski factorization of A. Returns the upper triangular factor, such that RR = A.y apply(X, MARGIN, FUN)其中X为参与运算的矩阵, FUN为上面的一个函数或“+”、“-”、“*

14、”、“”(必须放在引号中),MARGIN=1表示按列计算,MARGIN=2表示按行计算。我们还用到sweep( )函数,命令 sweep(X, MARGIN, STATS, FUN)表示从矩阵X中按MATGIN计算STATS,并从X中除去(sweep out)。2.5.1 求均值 m apply(m, MARGIN=1, FUN=mean) # 求各行的均值1 -0.3773865 0.3864138 0.2052353 apply(m, MARGIN=2, FUN=mean) # 求各列的均值1 0.3386202 0.7320669 -0.4624578 -0.32254602.5.2 标

15、准化 scale(m, center=T, scale=T)2.5.3 减去中位数 row.med sweep(m, MARGIN=1, STATS=row.med, FUN=”-”)第三章 多元正态分布及参数的估计3.1 绘制二元正态密度函数及其相应等高线图书上例2.2.2,时的二元正态密度函数及其等高线图: x-seq(-3,3,by=0.1) y-x f-function(x,y,a=1,b=1,r=0) a1=sqrt(a) b1=sqrt(b) d=1-r*r d1=sqrt(d)*a1*b1 z=1/(2*pi*d1)*exp(-x*x/a-y*y/b+2*r*x*y/(a1*b1)/(2*d) z Xn ln Xn A m A S R x n p u0 ln x0 xm mm a ai=solve(a) dd=xm%*%ai%*%t(xm) d2=(n-1)*dd t2=n*d2; f f ,11, 2.904546 fa-qf(0.95,p,n-p) # 自由度为(p,n-p)的F分布的0

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1