ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:153.48KB ,
资源ID:5630121      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5630121.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(晶体三极管放大的简单原理.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

晶体三极管放大的简单原理.docx

1、晶体三极管放大的简单原理晶体三极管放大的简单原理三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供 Ib、Ic 和 Ie 这三个电流。为了容易理解,我们还是用水流比喻电流(见图 1 )。这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。如果细管子中没有水流,粗管子中的闸门就会关闭。注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。三极管的基极 b 、集电极 c 和发射极 e 就对应着图

2、4 中的细管、粗管和粗细交汇的管子。电路见图 5 ,若给三极管外加一定的电压,就会产生电流 Ib 、 Ic 和 Ie 。调节电位器 RP 改变基极电流 Ib , Ic 也随之变化。由于 Ic Ib ,所以很小的 Ib 控制着比它大 倍的 Ic 。 Ic 不是由三极管产生的,是由电源 VCC 在 Ib 的控制下提供的,所以说三极管起着能量转换作用。 图1对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。 但三极管厉害的地方在于:它可以通过小电流去控制大电流。放大的原理就在于:通过小的交流输入,控制大的静态直流。 假设三极管是个大坝,这个大坝奇怪的地方是,有两

3、个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。 所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。 如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。 在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。 如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门

4、还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。 饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。 在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。 而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。单纯从“放大”的角度来看,我们希望 值越大越好。可是,三极管接成共发射极放大电路(图 2)时,从管子的集电极 c 到发射极 e 总会产生一

5、有害的漏电流,称为穿透电流 Iceo ,它的大小与 值近似成正比, 值越大, Iceo 就越大。 Iceo 这种寄生电流不受 Ib 控制,却成为集电极电流 Ic 的一部分, Ic Ib Iceo 。值得注意的是, Iceo 跟温度有密切的关系,温度升高, Iceo 急剧变大,破坏了放大电路工作的稳定性。所以,选择三极管时,并不是 越大越好,一般取硅管 为 40 150 ,锗管取 40 80 。 图2在常温下,锗管的穿透电流比较大,一般由几十微安到几百微安,硅管的穿透电流就比较小,一般只有零点几微安到几微安。 Iceo 虽然不大,却与温度有着密切的关系,它们遵循着所谓的“加倍规则”,这就是温度每

6、升高 10 , Iceo 约增大一倍。例如,某锗管在常温 20 时, Iceo 为 20A ,在使用中管芯温度上升到 50 , Iceo 就增大到 160A 左右。测量 Iceo 的电路很简单(图 3),三极管的基极开路,在集电极与发射极之间接入电源 VCC ( 6V ),串联在电路中的电流表(可用万用表中的 0.1mA 挡)所指示的电流值就是 Iceo 。 图3如图4,假设三极管的=100,RP=200K,此时的Ib=6v/(200k+100k)=0.02mA,Ic=Ib=2mA当RP=0时,Ib=6v/100k=0.06mA,Ic=Ib=2mA。以上两种状态都符合Ic=Ib,我们说,三极管

7、处于放大区。假设RP=0,Rb=1k,此时,Ib=6v/1k=6mA按Ic=Ib计算,Ic应等于600mA,而实际上,由于图中300欧姆限流电阻(Rc)的存在,实际上Ic=(6v/300)20mA,此时,IcIb,而且,Ic不再受Ib控制,即处于饱和区,当RP和Rb大到一定程度,使Ube死区电压(硅管约0.5V,锗管约0.3)此时be结处于不导通状态,Ib=0,则Ic=0,处于截止区。 图4掌握三极管放大电路计算的一些技巧放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路

8、要掌握些什么内容?(1)分析电路中各元件的作用;(2)解放大电路的放大原理;(3)能分析计算电路的静态工作点;(4)理解静态工作点的设置目的和方法。以上四项中,最后一项较为重要。图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条

9、件,电子元件一定是要求有电能供应的了,否则就不叫电路了。在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作 状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电

10、源电压VCC。若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说,Ic电流达到了最大值,就算Ib增大,它也不能再增大了。以上两种状态我们一般称为开关状态,除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。若测Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态。理解静态工作点的设置目的和方法放大电路,就是将输入信号放大后输出,(一般有电压放大,电流放大和功率放大几种,这个不在这讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大小变化是有正有负,其它不说。上面提到在图1放大电路电路中,静态工作点

11、的设置为Uce接近于电源电压的一半,为什么?这是为了使信号正负能有对称的变化空间,在没有信号输入的时候,即信号输入为0,假设Uce为电源电压的一半,我们当它为一水平线,作为一个参考点。当输入信号增大时,则Ib增大,Ic电流增大,则电阻R2的电压U2=IcR2会随之增大,Uce=VCC-U2,会变小。U2最大理论上能达到等于VCC,则Uce最小会达到0V,这是说,在输入信增加时,Uce最大变化是从1/2的VCC变化到0V.同理,当输入信号减小时,则Ib减小,Ic电流减小,则电阻R2的电压U2=IcR2会随之减小,Uce=VCC-U2,会变大。在输入信减小时,Uce最大变化是从1/2的VCC变化到

12、VCC。这样,在输入信号一定范围内发生正负变化时,Uce以1/2VCC为准的话就有一个对称的正负变化范围,所以一般图1静态工作点的设置为Uce接近于电源电压的一半。要把Uce设计成接近于电源电压的一半,这是我们的目的,但如何才能把Uce设计成接近于电源电压的一半?这就是的手段了。这里要先知道几个东西,第一个是我们常说的Ic、Ib,它们是三极管的集电极电流和基极电流,它们有一个关系是Ic=Ib,但我们初学的时候,老师很明显的没有告诉我们,Ic、Ib是多大才合适?这个问题比较难答,因为牵涉的东西比较的多,但一般来说,对于小功率管,一般设Ic在零点几毫安到几毫安,中功率管则在几毫安到几十毫安,大功率

13、管则在几十毫安到几安。在图1中,设Ic为2mA,则电阻R2的阻值就可以由R=U/I来计算,VCC为12V,则1/2VCC为6V,R2的阻值为6V/2mA,为3K。Ic设定为2毫安,则Ib可由Ib=Ic/推出,关健是的取值了,一般理论取值100,则Ib=2mA/100=20A,则R1=(VCC-0.7V)/Ib=11.3V/20A=56.5K,但实际上,小功率管的值远不止100,在150到400之间,或者更高,所以若按上面计算来做,电路是有可能处于饱和状态的,所以有时我们不明白,计算没错,但实际不能用,这是因为还少了一点实际的指导,指出理论与实际的差别。这种电路受值的影响大,每个人计算一样时,但

14、做出来的结果不一定相同。也就是说,这种电路的稳定性差,实际应用较少。但如果改为图2的分压式偏置电路,电路的分析计算和实际电路测量较为接近。在图2的分压式偏置电路中,同样的我们假设Ic为2mA,Uce设计成1/2VCC为6V。则R1、R2、R3、R4该如何取值呢。计算公式如下:因为Uce设计成1/2VCC为6V,则Ic( R3 + R4 )= 6V;IcIe。可以算出R3+R4=3K,这样,R3、R4各是多少?一般R4取100,R3为2.9K,实际上R3我们一般直取2.7K,因为E24系列电阻中没有2.9K,取值2.7K与2.9K没什么大的区别。因为R2两端的电压等于Ube+UR4,即0.7V+

15、1002mA=0.9V,我们设Ic为2mA,一般理论取值100,则Ib=2mA/100=20A,这里有一个电流要估算的,就是流过R1的电流了,一般取值为Ib的10倍左右,取IR1=200A。则R1=11.1V/200A56K ,R2=0.9V(/200-20)A=5K;考虑到实际上的值可能远大于100,所以R2的实际取值为4.7K。这样,R1、R2、R3、R4的取值分别为56K,4.7K,2.7K,100,Uce为6.4V。在上面的分析计算中,多次提出假设什么的,这在实际应用中是必要的,很多时候需要一个参考值来给我们计算,但往往却没有,这里面一是我们对各种器件不熟悉,二是忘记了一件事,我们自己才是用电路的人,一些数据可以自己设定,这样可以少走弯路。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1